{"title":"关于标量曲率与简明场方程的注记","authors":"Ramesh Sharma, Sharief Deshmukh","doi":"10.36890/IEJG.906792","DOIUrl":null,"url":null,"abstract":"We show that the scalar curvature of a Riemannian manifold M is constant if it satisfies (i) the concircular field equation and M is compact, (ii) the special concircular field equation. Finally, we show that, if a complete connected Riemannian manifold admits a concircular non-isometric vector field leaving the scalar curvature invariant, and the conformal function is special concircular, then the scalar curvature is a constant.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on Scalar Curvature and Concircular Field Equation\",\"authors\":\"Ramesh Sharma, Sharief Deshmukh\",\"doi\":\"10.36890/IEJG.906792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the scalar curvature of a Riemannian manifold M is constant if it satisfies (i) the concircular field equation and M is compact, (ii) the special concircular field equation. Finally, we show that, if a complete connected Riemannian manifold admits a concircular non-isometric vector field leaving the scalar curvature invariant, and the conformal function is special concircular, then the scalar curvature is a constant.\",\"PeriodicalId\":43768,\"journal\":{\"name\":\"International Electronic Journal of Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36890/IEJG.906792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/IEJG.906792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Remarks on Scalar Curvature and Concircular Field Equation
We show that the scalar curvature of a Riemannian manifold M is constant if it satisfies (i) the concircular field equation and M is compact, (ii) the special concircular field equation. Finally, we show that, if a complete connected Riemannian manifold admits a concircular non-isometric vector field leaving the scalar curvature invariant, and the conformal function is special concircular, then the scalar curvature is a constant.