一种基于显著性图和PCANet的花卉图像分类算法

Yan Yangyang, F. Xiang
{"title":"一种基于显著性图和PCANet的花卉图像分类算法","authors":"Yan Yangyang, F. Xiang","doi":"10.17265/1548-7709/2019.01.002","DOIUrl":null,"url":null,"abstract":"Flower Image Classification is a Fine-Grained Classification problem. The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference. In this paper, we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty. This algorithm mainly consists of two parts: flower region selection, flower feature learning. In first part, we combine saliency map with gray-scale map to select flower region. In second part, we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically, then a 102-way softmax layer that follow the PCANet achieve classification. Our approach achieves 84.12% accuracy on Oxford 17 Flowers dataset. The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flower Image Classification Algorithm Based on Saliency Map and PCANet\",\"authors\":\"Yan Yangyang, F. Xiang\",\"doi\":\"10.17265/1548-7709/2019.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flower Image Classification is a Fine-Grained Classification problem. The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference. In this paper, we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty. This algorithm mainly consists of two parts: flower region selection, flower feature learning. In first part, we combine saliency map with gray-scale map to select flower region. In second part, we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically, then a 102-way softmax layer that follow the PCANet achieve classification. Our approach achieves 84.12% accuracy on Oxford 17 Flowers dataset. The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.\",\"PeriodicalId\":69156,\"journal\":{\"name\":\"通讯和计算机:中英文版\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"通讯和计算机:中英文版\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.17265/1548-7709/2019.01.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2019.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

花卉图像分类是一个细粒度分类问题。细粒度分类的主要难点是类间相似性大,类内差异性大。本文提出了一种基于显著性映射和PCANet的新算法来克服这一困难。该算法主要由花的区域选择和花的特征学习两部分组成。在第一部分中,我们结合显著性图和灰度图来选择花区。在第二部分,我们使用花区域作为输入来训练PCANet,这是一个简单的深度学习网络,用于自动学习花的特征,然后在PCANet之后的102路softmax层实现分类。我们的方法在Oxford 17 Flowers数据集上达到了84.12%的准确率。结果表明,将显著性图与简单的深度学习网络PCANet相结合,可以应用于花卉图像分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Flower Image Classification Algorithm Based on Saliency Map and PCANet
Flower Image Classification is a Fine-Grained Classification problem. The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference. In this paper, we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty. This algorithm mainly consists of two parts: flower region selection, flower feature learning. In first part, we combine saliency map with gray-scale map to select flower region. In second part, we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically, then a 102-way softmax layer that follow the PCANet achieve classification. Our approach achieves 84.12% accuracy on Oxford 17 Flowers dataset. The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
843
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信