{"title":"氧化锌纳米颗粒对食源性病原菌大肠杆菌和金黄色葡萄球菌的抑制作用","authors":"Khaled Saif Aldin, S. Al-Hariri, Adnan Ali-Nizam","doi":"10.47014/15.2.4","DOIUrl":null,"url":null,"abstract":"In this work, various concentrations of ZnO nano particles, prepared by the coprecipitation method with a size range of 47-68 nm, have been investigated as antimicrobial agents. Dilution antimicrobial susceptibility tests were carried out on two kinds of microbes (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) according to the standard method recommended by Clinical and Laboratory Standards Institute, CLSI-2015-M07-A10. The results showed that the antimicrobial effect is larger, the higher the concentration of ZnO nano particles in solution. It was also found that Gram-positive microbes are more sensitive to ZnO nano particles when compared with the Gram-negative ones. The minimum inhibitory concentration (MIC) for E. coli was found to be 50 mg/mL while that for S. aureus was 25 mg/mL. The minimum bactericidal concentration (MBC) was 1600 mg/mL for E. coli and 800 mg/mL for S. aureus.","PeriodicalId":14654,"journal":{"name":"Jordan Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effectiveness of ZnO Nano Particles against the Foodborne Microbial Pathogens E. coli and S. aureus\",\"authors\":\"Khaled Saif Aldin, S. Al-Hariri, Adnan Ali-Nizam\",\"doi\":\"10.47014/15.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, various concentrations of ZnO nano particles, prepared by the coprecipitation method with a size range of 47-68 nm, have been investigated as antimicrobial agents. Dilution antimicrobial susceptibility tests were carried out on two kinds of microbes (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) according to the standard method recommended by Clinical and Laboratory Standards Institute, CLSI-2015-M07-A10. The results showed that the antimicrobial effect is larger, the higher the concentration of ZnO nano particles in solution. It was also found that Gram-positive microbes are more sensitive to ZnO nano particles when compared with the Gram-negative ones. The minimum inhibitory concentration (MIC) for E. coli was found to be 50 mg/mL while that for S. aureus was 25 mg/mL. The minimum bactericidal concentration (MBC) was 1600 mg/mL for E. coli and 800 mg/mL for S. aureus.\",\"PeriodicalId\":14654,\"journal\":{\"name\":\"Jordan Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47014/15.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47014/15.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effectiveness of ZnO Nano Particles against the Foodborne Microbial Pathogens E. coli and S. aureus
In this work, various concentrations of ZnO nano particles, prepared by the coprecipitation method with a size range of 47-68 nm, have been investigated as antimicrobial agents. Dilution antimicrobial susceptibility tests were carried out on two kinds of microbes (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) according to the standard method recommended by Clinical and Laboratory Standards Institute, CLSI-2015-M07-A10. The results showed that the antimicrobial effect is larger, the higher the concentration of ZnO nano particles in solution. It was also found that Gram-positive microbes are more sensitive to ZnO nano particles when compared with the Gram-negative ones. The minimum inhibitory concentration (MIC) for E. coli was found to be 50 mg/mL while that for S. aureus was 25 mg/mL. The minimum bactericidal concentration (MBC) was 1600 mg/mL for E. coli and 800 mg/mL for S. aureus.