二维非定常溃坝波FVM和SPH数值解的对比分析

IF 2.4 4区 环境科学与生态学 Q3 WATER RESOURCES
Ibrahim Rahou, Khaled Korichi
{"title":"二维非定常溃坝波FVM和SPH数值解的对比分析","authors":"Ibrahim Rahou, Khaled Korichi","doi":"10.2478/johh-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a comparison of two-dimensional numerical solutions of unsteady free surface flow. This is a simulation of the dam-break wave with different configurations using based-mesh finite volume method and meshless smoothed particle hydrodynamics (SPH). Two well-known approaches, widely used in the computational fluid dynamics (CFD). These techniques have proven their robustness in the numerical treatment of such conservation laws. The main goal is to check the ability of the SPH method and the first order finite volume HLLC solver to reproduce the numerical solutions of the 2D shallow water equations. Based on many benchmark tests, one investigates the effect of the topographic variation along the x and y directions on behavior of the numerical solutions namely at the wet-dry front. The comparison between the simulated results, the analytical solutions and the experimental measurements shows a good correlation, although the finite volume approach remains more advantageous in terms of accuracy and the CPU time.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"305 - 315"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of numerical solutions of 2D unsteady dambreak waves using FVM and SPH method\",\"authors\":\"Ibrahim Rahou, Khaled Korichi\",\"doi\":\"10.2478/johh-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work presents a comparison of two-dimensional numerical solutions of unsteady free surface flow. This is a simulation of the dam-break wave with different configurations using based-mesh finite volume method and meshless smoothed particle hydrodynamics (SPH). Two well-known approaches, widely used in the computational fluid dynamics (CFD). These techniques have proven their robustness in the numerical treatment of such conservation laws. The main goal is to check the ability of the SPH method and the first order finite volume HLLC solver to reproduce the numerical solutions of the 2D shallow water equations. Based on many benchmark tests, one investigates the effect of the topographic variation along the x and y directions on behavior of the numerical solutions namely at the wet-dry front. The comparison between the simulated results, the analytical solutions and the experimental measurements shows a good correlation, although the finite volume approach remains more advantageous in terms of accuracy and the CPU time.\",\"PeriodicalId\":50183,\"journal\":{\"name\":\"Journal Of Hydrology And Hydromechanics\",\"volume\":\"71 1\",\"pages\":\"305 - 315\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Of Hydrology And Hydromechanics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2478/johh-2023-0005\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2478/johh-2023-0005","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

本文对非定常自由表面流的二维数值解进行了比较。这是使用基于网格有限体积法和无网格光滑粒子流体动力学(SPH)对不同配置的溃坝波进行模拟。两种众所周知的方法,广泛用于计算流体动力学(CFD)。这些技术已经在对这些守恒定律的数值处理中证明了它们的稳健性。主要目标是检查SPH方法和一阶有限体积HLLC求解器再现二维浅水方程数值解的能力。基于许多基准测试,研究了沿x和y方向的地形变化对数值解行为的影响,即在干湿锋处。模拟结果、解析解和实验测量之间的比较显示出良好的相关性,尽管有限体积方法在精度和CPU时间方面仍然更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of numerical solutions of 2D unsteady dambreak waves using FVM and SPH method
Abstract This work presents a comparison of two-dimensional numerical solutions of unsteady free surface flow. This is a simulation of the dam-break wave with different configurations using based-mesh finite volume method and meshless smoothed particle hydrodynamics (SPH). Two well-known approaches, widely used in the computational fluid dynamics (CFD). These techniques have proven their robustness in the numerical treatment of such conservation laws. The main goal is to check the ability of the SPH method and the first order finite volume HLLC solver to reproduce the numerical solutions of the 2D shallow water equations. Based on many benchmark tests, one investigates the effect of the topographic variation along the x and y directions on behavior of the numerical solutions namely at the wet-dry front. The comparison between the simulated results, the analytical solutions and the experimental measurements shows a good correlation, although the finite volume approach remains more advantageous in terms of accuracy and the CPU time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信