简单表面奇异点Hilbert格式的欧拉数与量子仿射代数标准模的量子维数

Pub Date : 2020-01-12 DOI:10.1215/21562261-2021-0006
H. Nakajima
{"title":"简单表面奇异点Hilbert格式的欧拉数与量子仿射代数标准模的量子维数","authors":"H. Nakajima","doi":"10.1215/21562261-2021-0006","DOIUrl":null,"url":null,"abstract":"We prove the conjecture by Gyenge, Nemethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\\operatorname{Hilb}^n(\\mathbb C^2/\\Gamma)$ on a simple singularity $\\mathbb C^2/\\Gamma$, where $\\Gamma$ is a finite subgroup of $\\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $\\Gamma$ at $\\zeta = \\exp(\\frac{2\\pi i}{2(h^\\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras\",\"authors\":\"H. Nakajima\",\"doi\":\"10.1215/21562261-2021-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the conjecture by Gyenge, Nemethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\\\\operatorname{Hilb}^n(\\\\mathbb C^2/\\\\Gamma)$ on a simple singularity $\\\\mathbb C^2/\\\\Gamma$, where $\\\\Gamma$ is a finite subgroup of $\\\\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $\\\\Gamma$ at $\\\\zeta = \\\\exp(\\\\frac{2\\\\pi i}{2(h^\\\\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\\\\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2021-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了Gyenge,Nemethi和Szendrõi在arXiv:1512066844,arXiv:5152066848中的猜想,给出了点$\operatorname{Hilb}^n(\mathbb C^2/\Gamma)$的Hilbert格式的Euler数在一个简单奇点$\mathbb C ^2/\Gamma$上的生成函数公式,其中$\Gamma$是$\mathrm{SL}(2)$的有限子群。我们从与$\Gamma$相关的量子仿射代数的标准模在$\zeta=\exp(\frac{2\pi i}{2(h^\vee+1)})$处的量子维数总是$1$的声明中推导出,这是Kuniba猜想的一个特例[Kun93]。这里$h^\vee$是双Coxeter数。我们还证明了以前$E_7$、$E_8$不为人所知的索赔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Euler numbers of Hilbert schemes of points on simple surface singularities and quantum dimensions of standard modules of quantum affine algebras
We prove the conjecture by Gyenge, Nemethi and Szendrői in arXiv:1512.06844, arXiv:1512.06848 giving a formula of the generating function of Euler numbers of Hilbert schemes of points $\operatorname{Hilb}^n(\mathbb C^2/\Gamma)$ on a simple singularity $\mathbb C^2/\Gamma$, where $\Gamma$ is a finite subgroup of $\mathrm{SL}(2)$. We deduce it from the claim that quantum dimensions of standard modules for the quantum affine algebra associated with $\Gamma$ at $\zeta = \exp(\frac{2\pi i}{2(h^\vee+1)})$ are always $1$, which is a special case of a conjecture by Kuniba [Kun93]. Here $h^\vee$ is the dual Coxeter number. We also prove the claim, which was not known for $E_7$, $E_8$ before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信