一种分位数处理效果的数据融合方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yijiao Zhang, Zhongyi Zhu
{"title":"一种分位数处理效果的数据融合方法","authors":"Yijiao Zhang, Zhongyi Zhu","doi":"10.5705/ss.202022.0288","DOIUrl":null,"url":null,"abstract":"With the increasing availability of datasets, developing data fusion methods to leverage the strengths of different datasets to draw causal effects is of great practical importance to many scientific fields. In this paper, we consider estimating the quantile treatment effects using small validation data with fully-observed confounders and large auxiliary data with unmeasured confounders. We propose a Fused Quantile Treatment effects Estimator (FQTE) by integrating the information from two datasets based on doubly robust estimating functions. We allow for the misspecification of the models on the dataset with unmeasured confounders. Under mild conditions, we show that the proposed FQTE is asymptotically normal and more efficient than the initial QTE estimator using the validation data solely. By establishing the asymptotic linear forms of related estimators, convenient methods for covariance estimation are provided. Simulation studies demonstrate the empirical validity and improved efficiency of our fused estimators. We illustrate the proposed method with an application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data Fusion Method for Quantile Treatment Effects\",\"authors\":\"Yijiao Zhang, Zhongyi Zhu\",\"doi\":\"10.5705/ss.202022.0288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing availability of datasets, developing data fusion methods to leverage the strengths of different datasets to draw causal effects is of great practical importance to many scientific fields. In this paper, we consider estimating the quantile treatment effects using small validation data with fully-observed confounders and large auxiliary data with unmeasured confounders. We propose a Fused Quantile Treatment effects Estimator (FQTE) by integrating the information from two datasets based on doubly robust estimating functions. We allow for the misspecification of the models on the dataset with unmeasured confounders. Under mild conditions, we show that the proposed FQTE is asymptotically normal and more efficient than the initial QTE estimator using the validation data solely. By establishing the asymptotic linear forms of related estimators, convenient methods for covariance estimation are provided. Simulation studies demonstrate the empirical validity and improved efficiency of our fused estimators. We illustrate the proposed method with an application.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0288\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0288","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着数据集的可用性越来越高,开发数据融合方法来利用不同数据集的优势来得出因果效应对许多科学领域都具有重要的现实意义。在本文中,我们考虑使用具有完全观察到的混杂因素的小验证数据和具有未测量混杂因素的大辅助数据来估计分位数治疗效果。提出了一种基于双鲁棒估计函数的融合分位数处理效果估计器(FQTE)。我们允许使用未测量的混杂因素对数据集上的模型进行错误规范。在温和的条件下,我们证明了所提出的FQTE是渐近正态的,并且比仅使用验证数据的初始QTE估计器更有效。通过建立相关估计量的渐近线性形式,提供了方便的协方差估计方法。仿真研究证明了该融合估计器的经验有效性和提高的效率。我们用一个应用来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Data Fusion Method for Quantile Treatment Effects
With the increasing availability of datasets, developing data fusion methods to leverage the strengths of different datasets to draw causal effects is of great practical importance to many scientific fields. In this paper, we consider estimating the quantile treatment effects using small validation data with fully-observed confounders and large auxiliary data with unmeasured confounders. We propose a Fused Quantile Treatment effects Estimator (FQTE) by integrating the information from two datasets based on doubly robust estimating functions. We allow for the misspecification of the models on the dataset with unmeasured confounders. Under mild conditions, we show that the proposed FQTE is asymptotically normal and more efficient than the initial QTE estimator using the validation data solely. By establishing the asymptotic linear forms of related estimators, convenient methods for covariance estimation are provided. Simulation studies demonstrate the empirical validity and improved efficiency of our fused estimators. We illustrate the proposed method with an application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信