关于调和Z_2旋量的存在性

IF 1.3 1区 数学 Q1 MATHEMATICS
Aleksander Doan, Thomas Walpuski
{"title":"关于调和Z_2旋量的存在性","authors":"Aleksander Doan, Thomas Walpuski","doi":"10.4310/JDG/1615487003","DOIUrl":null,"url":null,"abstract":"We prove the existence of singular harmonic Z2 spinors on 3–manifolds with b1 > 1. The proof relies on a wall-crossing formula for solutions to the Seiberg–Witten equation with two spinors. The existence of singular harmonic Z2 spinors and the shape of our wall-crossing formula shed new light on recent observations made by Joyce [Joy17] regarding Donaldson and Segal’s proposal for counting G2–instantons [DS11].","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the existence of harmonic $Z_2$ spinors\",\"authors\":\"Aleksander Doan, Thomas Walpuski\",\"doi\":\"10.4310/JDG/1615487003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of singular harmonic Z2 spinors on 3–manifolds with b1 > 1. The proof relies on a wall-crossing formula for solutions to the Seiberg–Witten equation with two spinors. The existence of singular harmonic Z2 spinors and the shape of our wall-crossing formula shed new light on recent observations made by Joyce [Joy17] regarding Donaldson and Segal’s proposal for counting G2–instantons [DS11].\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JDG/1615487003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JDG/1615487003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

证明了具有b1 bbb1的3 -流形上奇异调和Z2旋子的存在性。该证明依赖于具有两个旋量的Seiberg-Witten方程解的过壁公式。奇异调和Z2旋子的存在和我们的过壁公式的形状为Joyce [Joy17]最近对Donaldson和Segal计算g2 -瞬子[DS11]的建议所做的观察提供了新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of harmonic $Z_2$ spinors
We prove the existence of singular harmonic Z2 spinors on 3–manifolds with b1 > 1. The proof relies on a wall-crossing formula for solutions to the Seiberg–Witten equation with two spinors. The existence of singular harmonic Z2 spinors and the shape of our wall-crossing formula shed new light on recent observations made by Joyce [Joy17] regarding Donaldson and Segal’s proposal for counting G2–instantons [DS11].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信