{"title":"矩阵多项式Eneström-Kakeya定理的扩展","authors":"A. Melman","doi":"10.1515/spma-2019-0024","DOIUrl":null,"url":null,"abstract":"Abstract The classical Eneström-Kakeya theorem establishes explicit upper and lower bounds on the zeros of a polynomial with positive coefficients and has been generalized for positive definite matrix polynomials by several authors. Recently, extensions that improve the (scalar) Eneström-Kakeya theorem were obtained with a transparent and unified approach using just a few tools. Here, the same tools are used to generalize these extensions to positive definite matrix polynomials, while at the same time generalizing the tools themselves. In the process, a framework is developed that can naturally generate additional similar results.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"7 1","pages":"304 - 315"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2019-0024","citationCount":"0","resultStr":"{\"title\":\"Extensions of the Eneström-Kakeya theorem for matrix polynomials\",\"authors\":\"A. Melman\",\"doi\":\"10.1515/spma-2019-0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The classical Eneström-Kakeya theorem establishes explicit upper and lower bounds on the zeros of a polynomial with positive coefficients and has been generalized for positive definite matrix polynomials by several authors. Recently, extensions that improve the (scalar) Eneström-Kakeya theorem were obtained with a transparent and unified approach using just a few tools. Here, the same tools are used to generalize these extensions to positive definite matrix polynomials, while at the same time generalizing the tools themselves. In the process, a framework is developed that can naturally generate additional similar results.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"7 1\",\"pages\":\"304 - 315\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/spma-2019-0024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2019-0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2019-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extensions of the Eneström-Kakeya theorem for matrix polynomials
Abstract The classical Eneström-Kakeya theorem establishes explicit upper and lower bounds on the zeros of a polynomial with positive coefficients and has been generalized for positive definite matrix polynomials by several authors. Recently, extensions that improve the (scalar) Eneström-Kakeya theorem were obtained with a transparent and unified approach using just a few tools. Here, the same tools are used to generalize these extensions to positive definite matrix polynomials, while at the same time generalizing the tools themselves. In the process, a framework is developed that can naturally generate additional similar results.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.