V. Gružauskas, D. Čalnerytė, Tautvydas Fyleris, Andrius Kriščiūnas
{"title":"多元时间序列聚类分析在城市区域社会经济指标中的应用","authors":"V. Gružauskas, D. Čalnerytė, Tautvydas Fyleris, Andrius Kriščiūnas","doi":"10.2478/remav-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract The socio-economic development of municipalities is defined by a set of indicators in a period of interest and can be analyzed as a multivariate time series. It is important to know which municipalities have similar socio-economic development trends when recommendations for policy makers are provided or datasets for real estate and insurance price evaluations are expanded. Usually, key indicators are derived from expert experience, however this publication implements a statistical approach to identify key trends. Unsupervised machine learning was performed by employing K-means clusterization and principal component analysis for a dataset of multivariate time series. After 100 runs, the result with minimal summing error was analyzed as the final clusterization. The dataset represented various socio-economic indicators in municipalities of Lithuania in the period from 2006 to 2018. The significant differences were noticed for the indicators of municipalities in the cluster which contained the 4 largest cities of Lithuania, and another one containing 3 districts of the 3 largest cities. A robust approach is proposed in this article, when identifying socio-economic differences between regions where real estate is allocated. For example, the evaluated distance matrix can be used for adjustment coefficients when applying the comparative method for real estate valuation.","PeriodicalId":37812,"journal":{"name":"Real Estate Management and Valuation","volume":"29 1","pages":"39 - 51"},"PeriodicalIF":0.6000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Multivariate Time Series Cluster Analysis to Regional Socioeconomic Indicators of Municipalities\",\"authors\":\"V. Gružauskas, D. Čalnerytė, Tautvydas Fyleris, Andrius Kriščiūnas\",\"doi\":\"10.2478/remav-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The socio-economic development of municipalities is defined by a set of indicators in a period of interest and can be analyzed as a multivariate time series. It is important to know which municipalities have similar socio-economic development trends when recommendations for policy makers are provided or datasets for real estate and insurance price evaluations are expanded. Usually, key indicators are derived from expert experience, however this publication implements a statistical approach to identify key trends. Unsupervised machine learning was performed by employing K-means clusterization and principal component analysis for a dataset of multivariate time series. After 100 runs, the result with minimal summing error was analyzed as the final clusterization. The dataset represented various socio-economic indicators in municipalities of Lithuania in the period from 2006 to 2018. The significant differences were noticed for the indicators of municipalities in the cluster which contained the 4 largest cities of Lithuania, and another one containing 3 districts of the 3 largest cities. A robust approach is proposed in this article, when identifying socio-economic differences between regions where real estate is allocated. For example, the evaluated distance matrix can be used for adjustment coefficients when applying the comparative method for real estate valuation.\",\"PeriodicalId\":37812,\"journal\":{\"name\":\"Real Estate Management and Valuation\",\"volume\":\"29 1\",\"pages\":\"39 - 51\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Estate Management and Valuation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/remav-2021-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Estate Management and Valuation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/remav-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Application of Multivariate Time Series Cluster Analysis to Regional Socioeconomic Indicators of Municipalities
Abstract The socio-economic development of municipalities is defined by a set of indicators in a period of interest and can be analyzed as a multivariate time series. It is important to know which municipalities have similar socio-economic development trends when recommendations for policy makers are provided or datasets for real estate and insurance price evaluations are expanded. Usually, key indicators are derived from expert experience, however this publication implements a statistical approach to identify key trends. Unsupervised machine learning was performed by employing K-means clusterization and principal component analysis for a dataset of multivariate time series. After 100 runs, the result with minimal summing error was analyzed as the final clusterization. The dataset represented various socio-economic indicators in municipalities of Lithuania in the period from 2006 to 2018. The significant differences were noticed for the indicators of municipalities in the cluster which contained the 4 largest cities of Lithuania, and another one containing 3 districts of the 3 largest cities. A robust approach is proposed in this article, when identifying socio-economic differences between regions where real estate is allocated. For example, the evaluated distance matrix can be used for adjustment coefficients when applying the comparative method for real estate valuation.
期刊介绍:
Real Estate Management and Valuation (REMV) is a journal that publishes new theoretical and practical insights that improve our understanding in the field of real estate valuation, analysis and property management. The aim of the Polish Real Estate Scientific Society (Towarzystwo Naukowe Nieruchomości) is developing and disseminating knowledge about land management and the methods, techniques and principles of real estate valuation and the popularization of scientific achievements in this field, as well as their practical applications in the activities of economic entities.