使用实时LSTM网站对推特上反对2024年印尼总统来电的公众意见进行分类

Muhammad Rizki, M. Hidayattullah, Dwi Intan Af’idah
{"title":"使用实时LSTM网站对推特上反对2024年印尼总统来电的公众意见进行分类","authors":"Muhammad Rizki, M. Hidayattullah, Dwi Intan Af’idah","doi":"10.35970/infotekmesin.v14i2.1908","DOIUrl":null,"url":null,"abstract":"The analysis of public opinions from Indonesian netizens regarding the potential presidential candidates for Indonesia in 2024 on Twitter is challenging. Human-based classification of the candidates on Twitter has limitations as it requires expertise and a considerable amount of time to process the data. Therefore, a system that provides realtime visualization of public opinion classification is necessary. Previous research only focused on model evaluation, while this study aims to implement the best model on a website. The objective of this research is to develop a system for monitoring the Twitter-based public opinion classification of the potential presidential candidates for Indonesia in 2024 within specific time frames. The training process utilizes the LSTM method, resulting in a model with an accuracy of 76%. Parameters such as batch size, dropout, and learning rate were tested. The data used in this study was obtained by crawling Twitter using the keywords Ganjar Pranowo, Anies Baswedan, and Prabowo Subianto. The LSTM model was then implemented in a website-based system that generates a dashboard with features such as a color-coded map displaying the highest levels of positive sentiment for each candidate in each province, the overall classification count for each candidate, and filters for sentiment classification based on province and specific time frames. ","PeriodicalId":33598,"journal":{"name":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Klasifikasi Opini Publik di Twitter Terhadap Bakal Calon Presiden Indonesia Tahun 2024 Menggunakan LSTM Secara Realtime Berbasis Website\",\"authors\":\"Muhammad Rizki, M. Hidayattullah, Dwi Intan Af’idah\",\"doi\":\"10.35970/infotekmesin.v14i2.1908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of public opinions from Indonesian netizens regarding the potential presidential candidates for Indonesia in 2024 on Twitter is challenging. Human-based classification of the candidates on Twitter has limitations as it requires expertise and a considerable amount of time to process the data. Therefore, a system that provides realtime visualization of public opinion classification is necessary. Previous research only focused on model evaluation, while this study aims to implement the best model on a website. The objective of this research is to develop a system for monitoring the Twitter-based public opinion classification of the potential presidential candidates for Indonesia in 2024 within specific time frames. The training process utilizes the LSTM method, resulting in a model with an accuracy of 76%. Parameters such as batch size, dropout, and learning rate were tested. The data used in this study was obtained by crawling Twitter using the keywords Ganjar Pranowo, Anies Baswedan, and Prabowo Subianto. The LSTM model was then implemented in a website-based system that generates a dashboard with features such as a color-coded map displaying the highest levels of positive sentiment for each candidate in each province, the overall classification count for each candidate, and filters for sentiment classification based on province and specific time frames. \",\"PeriodicalId\":33598,\"journal\":{\"name\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35970/infotekmesin.v14i2.1908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35970/infotekmesin.v14i2.1908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印尼网民在推特上对2024年印尼潜在总统候选人的民意分析具有挑战性。在推特上对候选人进行人工分类有局限性,因为这需要专业知识和相当长的时间来处理数据。因此,一个提供实时可视化民意分类的系统是必要的。以前的研究只关注模型评估,而本研究旨在在网站上实现最佳模型。这项研究的目的是开发一个系统,在特定的时间范围内监测基于推特的2024年印尼潜在总统候选人的民意分类。训练过程使用LSTM方法,得到了准确率为76%的模型。对批量大小、辍学率和学习率等参数进行了测试。本研究中使用的数据是通过使用关键词Ganjar Pranowo、Anies Baswedan和Prabowo Subianto在Twitter上爬行获得的。LSTM模型随后在一个基于网站的系统中实现,该系统生成一个仪表板,该仪表板具有以下功能,如彩色编码地图,显示每个省份每个候选人的最高积极情绪水平,每个候选人的总体分类计数,以及基于省份和特定时间框架的情绪分类过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Opini Publik di Twitter Terhadap Bakal Calon Presiden Indonesia Tahun 2024 Menggunakan LSTM Secara Realtime Berbasis Website
The analysis of public opinions from Indonesian netizens regarding the potential presidential candidates for Indonesia in 2024 on Twitter is challenging. Human-based classification of the candidates on Twitter has limitations as it requires expertise and a considerable amount of time to process the data. Therefore, a system that provides realtime visualization of public opinion classification is necessary. Previous research only focused on model evaluation, while this study aims to implement the best model on a website. The objective of this research is to develop a system for monitoring the Twitter-based public opinion classification of the potential presidential candidates for Indonesia in 2024 within specific time frames. The training process utilizes the LSTM method, resulting in a model with an accuracy of 76%. Parameters such as batch size, dropout, and learning rate were tested. The data used in this study was obtained by crawling Twitter using the keywords Ganjar Pranowo, Anies Baswedan, and Prabowo Subianto. The LSTM model was then implemented in a website-based system that generates a dashboard with features such as a color-coded map displaying the highest levels of positive sentiment for each candidate in each province, the overall classification count for each candidate, and filters for sentiment classification based on province and specific time frames. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
30
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信