{"title":"带不动点约束的多输出集的分裂单调变分包含问题","authors":"V. A. Uzor, T. O. Alakoya, O. Mewomo","doi":"10.1515/cmam-2022-0199","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce and study the concept of split monotone variational inclusion problem with multiple output sets (SMVIPMOS). We propose a new iterative scheme, which employs the viscosity approximation technique for approximating the solution of the SMVIPMOS with fixed point constraints of a nonexpansive mapping in real Hilbert spaces. The proposed method utilises the inertial technique for accelerating the speed of convergence and a self-adaptive step size so that its implementation does not require prior knowledge of the operator norm. Under mild conditions, we obtain a strong convergence result for the proposed algorithm and obtain a consequent result, which complements several existing results in the literature. Moreover, we apply our result to study the notions of split variational inequality problem with multiple output sets with fixed point constraints and split convex minimisation problem with multiple output sets with fixed point constraints in Hilbert spaces. Finally, we present some numerical experiments to demonstrate the implementability of our proposed method.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"23 1","pages":"729 - 749"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On Split Monotone Variational Inclusion Problem with Multiple Output Sets with Fixed Point Constraints\",\"authors\":\"V. A. Uzor, T. O. Alakoya, O. Mewomo\",\"doi\":\"10.1515/cmam-2022-0199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce and study the concept of split monotone variational inclusion problem with multiple output sets (SMVIPMOS). We propose a new iterative scheme, which employs the viscosity approximation technique for approximating the solution of the SMVIPMOS with fixed point constraints of a nonexpansive mapping in real Hilbert spaces. The proposed method utilises the inertial technique for accelerating the speed of convergence and a self-adaptive step size so that its implementation does not require prior knowledge of the operator norm. Under mild conditions, we obtain a strong convergence result for the proposed algorithm and obtain a consequent result, which complements several existing results in the literature. Moreover, we apply our result to study the notions of split variational inequality problem with multiple output sets with fixed point constraints and split convex minimisation problem with multiple output sets with fixed point constraints in Hilbert spaces. Finally, we present some numerical experiments to demonstrate the implementability of our proposed method.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"23 1\",\"pages\":\"729 - 749\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0199\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0199","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Split Monotone Variational Inclusion Problem with Multiple Output Sets with Fixed Point Constraints
Abstract In this paper, we introduce and study the concept of split monotone variational inclusion problem with multiple output sets (SMVIPMOS). We propose a new iterative scheme, which employs the viscosity approximation technique for approximating the solution of the SMVIPMOS with fixed point constraints of a nonexpansive mapping in real Hilbert spaces. The proposed method utilises the inertial technique for accelerating the speed of convergence and a self-adaptive step size so that its implementation does not require prior knowledge of the operator norm. Under mild conditions, we obtain a strong convergence result for the proposed algorithm and obtain a consequent result, which complements several existing results in the literature. Moreover, we apply our result to study the notions of split variational inequality problem with multiple output sets with fixed point constraints and split convex minimisation problem with multiple output sets with fixed point constraints in Hilbert spaces. Finally, we present some numerical experiments to demonstrate the implementability of our proposed method.
期刊介绍:
The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs.
CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics.
The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.