双局部分式p(x,·)-Kirchhoff型问题的多重解

IF 0.9 4区 数学 Q2 MATHEMATICS
E. Azroul, A. Benkirane, M. Shimi, M. Srati
{"title":"双局部分式p(x,·)-Kirchhoff型问题的多重解","authors":"E. Azroul, A. Benkirane, M. Shimi, M. Srati","doi":"10.1216/jie.2022.34.1","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in the multiplicity of weak solutions for a bi-nonlocal fractional p(x, .)-Kirchhoff type problems. Our technical approach is based on the general three critical points theorem obtained by B. Ricceri.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for a binonlocal fractional p(x,·)-Kirchhoff type problem\",\"authors\":\"E. Azroul, A. Benkirane, M. Shimi, M. Srati\",\"doi\":\"10.1216/jie.2022.34.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are interested in the multiplicity of weak solutions for a bi-nonlocal fractional p(x, .)-Kirchhoff type problems. Our technical approach is based on the general three critical points theorem obtained by B. Ricceri.\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2022.34.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2022.34.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们感兴趣的是双非局部分式p(x,.)-Kirchhoff型问题的弱解的多重性。我们的技术方法是基于B.Ricceri获得的一般三个临界点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions for a binonlocal fractional p(x,·)-Kirchhoff type problem
In this paper, we are interested in the multiplicity of weak solutions for a bi-nonlocal fractional p(x, .)-Kirchhoff type problems. Our technical approach is based on the general three critical points theorem obtained by B. Ricceri.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integral Equations and Applications
Journal of Integral Equations and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications. The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field. The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信