规定$$ Q $$ -曲率时捏紧条件对标准球体的影响

Pub Date : 2022-11-07 DOI:10.1007/s10455-022-09878-6
Mohamed Ben Ayed, Khalil El Mehdi
{"title":"规定$$ Q $$ -曲率时捏紧条件对标准球体的影响","authors":"Mohamed Ben Ayed,&nbsp;Khalil El Mehdi","doi":"10.1007/s10455-022-09878-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the problem of prescribing a fourth-order conformal invariant on standard spheres. This problem is variational but it is noncompact due to the presence of nonconverging orbits of the gradient flow, the so called <i>critical points at infinity</i>. Following the method advised by Bahri we determine all such critical points at infinity and compute their contribution to the difference of topology between the level sets of the associated Euler–Lagrange functional. We then derive some existence results under pinching conditions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of pinching conditions in prescribing \\\\( Q \\\\)-curvature on standard spheres\",\"authors\":\"Mohamed Ben Ayed,&nbsp;Khalil El Mehdi\",\"doi\":\"10.1007/s10455-022-09878-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the problem of prescribing a fourth-order conformal invariant on standard spheres. This problem is variational but it is noncompact due to the presence of nonconverging orbits of the gradient flow, the so called <i>critical points at infinity</i>. Following the method advised by Bahri we determine all such critical points at infinity and compute their contribution to the difference of topology between the level sets of the associated Euler–Lagrange functional. We then derive some existence results under pinching conditions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09878-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09878-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在标准球面上规定一个四阶共形不变量的问题。这个问题是变分的,但由于梯度流的非收敛轨道,即所谓的无穷大临界点的存在,它是非紧的。根据Bahri建议的方法,我们确定了无穷远处的所有这些临界点,并计算它们对相关欧拉-拉格朗日函数的水平集之间拓扑差异的贡献。然后我们得到了一些在紧缩条件下的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The effect of pinching conditions in prescribing \( Q \)-curvature on standard spheres

In this paper, we study the problem of prescribing a fourth-order conformal invariant on standard spheres. This problem is variational but it is noncompact due to the presence of nonconverging orbits of the gradient flow, the so called critical points at infinity. Following the method advised by Bahri we determine all such critical points at infinity and compute their contribution to the difference of topology between the level sets of the associated Euler–Lagrange functional. We then derive some existence results under pinching conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信