{"title":"T上动力学DNLS的Cauchy问题的适定性","authors":"Nobu Kishimoto, Y. Tsutsumi","doi":"10.1142/s0219891623500029","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the kinetic derivative nonlinear Schrödinger equation on the torus [Formula: see text] for [Formula: see text], where the constants [Formula: see text] are such that [Formula: see text] and [Formula: see text], and [Formula: see text] denotes the Hilbert transform. This equation has dissipative nature, and the energy method is applicable to prove local well-posedness of the Cauchy problem in Sobolev spaces [Formula: see text] for [Formula: see text]. However, the gauge transform technique, which is useful for dealing with the derivative loss in the nonlinearity when [Formula: see text], cannot be directly adapted due to the presence of the Hilbert transform. In particular, there has been no result on local well-posedness in low regularity spaces or global solvability of the Cauchy problem. In this paper, we shall prove local and global well-posedness of the Cauchy problem for small initial data in [Formula: see text], [Formula: see text]. To this end, we make use of the parabolic-type smoothing effect arising from the resonant part of the nonlocal nonlinear term [Formula: see text], in addition to the usual dispersive-type smoothing effect for nonlinear Schrödinger equations with cubic nonlinearities. As by-products of the proof, we also obtain forward-in-time regularization and backward-in-time ill-posedness results.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Well-posedness of the Cauchy problem for the kinetic DNLS on T\",\"authors\":\"Nobu Kishimoto, Y. Tsutsumi\",\"doi\":\"10.1142/s0219891623500029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for the kinetic derivative nonlinear Schrödinger equation on the torus [Formula: see text] for [Formula: see text], where the constants [Formula: see text] are such that [Formula: see text] and [Formula: see text], and [Formula: see text] denotes the Hilbert transform. This equation has dissipative nature, and the energy method is applicable to prove local well-posedness of the Cauchy problem in Sobolev spaces [Formula: see text] for [Formula: see text]. However, the gauge transform technique, which is useful for dealing with the derivative loss in the nonlinearity when [Formula: see text], cannot be directly adapted due to the presence of the Hilbert transform. In particular, there has been no result on local well-posedness in low regularity spaces or global solvability of the Cauchy problem. In this paper, we shall prove local and global well-posedness of the Cauchy problem for small initial data in [Formula: see text], [Formula: see text]. To this end, we make use of the parabolic-type smoothing effect arising from the resonant part of the nonlocal nonlinear term [Formula: see text], in addition to the usual dispersive-type smoothing effect for nonlinear Schrödinger equations with cubic nonlinearities. As by-products of the proof, we also obtain forward-in-time regularization and backward-in-time ill-posedness results.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891623500029\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891623500029","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Well-posedness of the Cauchy problem for the kinetic DNLS on T
We consider the Cauchy problem for the kinetic derivative nonlinear Schrödinger equation on the torus [Formula: see text] for [Formula: see text], where the constants [Formula: see text] are such that [Formula: see text] and [Formula: see text], and [Formula: see text] denotes the Hilbert transform. This equation has dissipative nature, and the energy method is applicable to prove local well-posedness of the Cauchy problem in Sobolev spaces [Formula: see text] for [Formula: see text]. However, the gauge transform technique, which is useful for dealing with the derivative loss in the nonlinearity when [Formula: see text], cannot be directly adapted due to the presence of the Hilbert transform. In particular, there has been no result on local well-posedness in low regularity spaces or global solvability of the Cauchy problem. In this paper, we shall prove local and global well-posedness of the Cauchy problem for small initial data in [Formula: see text], [Formula: see text]. To this end, we make use of the parabolic-type smoothing effect arising from the resonant part of the nonlocal nonlinear term [Formula: see text], in addition to the usual dispersive-type smoothing effect for nonlinear Schrödinger equations with cubic nonlinearities. As by-products of the proof, we also obtain forward-in-time regularization and backward-in-time ill-posedness results.
期刊介绍:
This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.