{"title":"评估受COVID-19影响房屋的室内环境质量:以印度尼西亚班达亚齐为例","authors":"L. H. Sari, B. Kayan, Z. Zahriah","doi":"10.1108/ijbpa-02-2022-0033","DOIUrl":null,"url":null,"abstract":"PurposeDuring the COVID-19 pandemic in 2020–2021 in Indonesia, the indoor environmental quality (IEQ) of local houses occupied by infected occupants was adversely affected. This paper aims to appraise the IEQ of the affected Banda Aceh houses with insights into enabling them to be resilient against the negative impacts of the pandemic.Design/methodology/approachQuantitative field measurement in the case study of five concrete houses located in urban areas which are affected by IEQ factors: (1) indoor air quality (IAQ), (2) thermal comfort and (3) visual comfort, compared against the Indonesian National standard (SNI). The case study involved measurement of the first two factors over 24 h, while the third factor was measured during sun hours. Considering the limitations of the measuring tools for logging available data in this research, air quality is measured from 8 am to 10 pm.FindingsThermal comfort in the affected houses is generally regarded as warm, optimal and cool comfort, indicated by the effective temperatures of between 20.5 and 27.1°C. Frequently closed windows, limited land area and access had caused a lack of air circulation, with air velocity of dominantly 0 m/s in the houses. The illuminance of natural light received in three houses was insufficient – less than 120 lux as compared with the other two. This study found an uptrend of higher air temperature and relative humidity in the affected houses resulting in poorer IAQ; conversely, the higher the air velocity in the houses, the fewer the indoor air pollutants such as formaldehyde (HCHO), total volatile organic compounds (TVOC) and carbon dioxide (CO2).Originality/valueThis study is a pioneer in evaluating IEQ in houses occupied by COVID-19 patients in Indonesia, especially in dwelling cases in Aceh Province. It also encompasses environmental and societal challenges to sustaining resilient buildings in pandemic hit regions.","PeriodicalId":44905,"journal":{"name":"International Journal of Building Pathology and Adaptation","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An assessment of indoor environmental quality in COVID-19 affected houses: a case study in Banda Aceh, Indonesia\",\"authors\":\"L. H. Sari, B. Kayan, Z. Zahriah\",\"doi\":\"10.1108/ijbpa-02-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeDuring the COVID-19 pandemic in 2020–2021 in Indonesia, the indoor environmental quality (IEQ) of local houses occupied by infected occupants was adversely affected. This paper aims to appraise the IEQ of the affected Banda Aceh houses with insights into enabling them to be resilient against the negative impacts of the pandemic.Design/methodology/approachQuantitative field measurement in the case study of five concrete houses located in urban areas which are affected by IEQ factors: (1) indoor air quality (IAQ), (2) thermal comfort and (3) visual comfort, compared against the Indonesian National standard (SNI). The case study involved measurement of the first two factors over 24 h, while the third factor was measured during sun hours. Considering the limitations of the measuring tools for logging available data in this research, air quality is measured from 8 am to 10 pm.FindingsThermal comfort in the affected houses is generally regarded as warm, optimal and cool comfort, indicated by the effective temperatures of between 20.5 and 27.1°C. Frequently closed windows, limited land area and access had caused a lack of air circulation, with air velocity of dominantly 0 m/s in the houses. The illuminance of natural light received in three houses was insufficient – less than 120 lux as compared with the other two. This study found an uptrend of higher air temperature and relative humidity in the affected houses resulting in poorer IAQ; conversely, the higher the air velocity in the houses, the fewer the indoor air pollutants such as formaldehyde (HCHO), total volatile organic compounds (TVOC) and carbon dioxide (CO2).Originality/valueThis study is a pioneer in evaluating IEQ in houses occupied by COVID-19 patients in Indonesia, especially in dwelling cases in Aceh Province. It also encompasses environmental and societal challenges to sustaining resilient buildings in pandemic hit regions.\",\"PeriodicalId\":44905,\"journal\":{\"name\":\"International Journal of Building Pathology and Adaptation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Building Pathology and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijbpa-02-2022-0033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Building Pathology and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijbpa-02-2022-0033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An assessment of indoor environmental quality in COVID-19 affected houses: a case study in Banda Aceh, Indonesia
PurposeDuring the COVID-19 pandemic in 2020–2021 in Indonesia, the indoor environmental quality (IEQ) of local houses occupied by infected occupants was adversely affected. This paper aims to appraise the IEQ of the affected Banda Aceh houses with insights into enabling them to be resilient against the negative impacts of the pandemic.Design/methodology/approachQuantitative field measurement in the case study of five concrete houses located in urban areas which are affected by IEQ factors: (1) indoor air quality (IAQ), (2) thermal comfort and (3) visual comfort, compared against the Indonesian National standard (SNI). The case study involved measurement of the first two factors over 24 h, while the third factor was measured during sun hours. Considering the limitations of the measuring tools for logging available data in this research, air quality is measured from 8 am to 10 pm.FindingsThermal comfort in the affected houses is generally regarded as warm, optimal and cool comfort, indicated by the effective temperatures of between 20.5 and 27.1°C. Frequently closed windows, limited land area and access had caused a lack of air circulation, with air velocity of dominantly 0 m/s in the houses. The illuminance of natural light received in three houses was insufficient – less than 120 lux as compared with the other two. This study found an uptrend of higher air temperature and relative humidity in the affected houses resulting in poorer IAQ; conversely, the higher the air velocity in the houses, the fewer the indoor air pollutants such as formaldehyde (HCHO), total volatile organic compounds (TVOC) and carbon dioxide (CO2).Originality/valueThis study is a pioneer in evaluating IEQ in houses occupied by COVID-19 patients in Indonesia, especially in dwelling cases in Aceh Province. It also encompasses environmental and societal challenges to sustaining resilient buildings in pandemic hit regions.
期刊介绍:
The International Journal of Building Pathology and Adaptation publishes findings on contemporary and original research towards sustaining, maintaining and managing existing buildings. The journal provides an interdisciplinary approach to the study of buildings, their performance and adaptation in order to develop appropriate technical and management solutions. This requires an holistic understanding of the complex interactions between the materials, components, occupants, design and environment, demanding the application and development of methodologies for diagnosis, prognosis and treatment in this multidisciplinary area. With rapid technological developments, a changing climate and more extreme weather, coupled with developing societal demands, the challenges to the professions responsible are complex and varied; solutions need to be rigorously researched and tested to navigate the dynamic context in which today''s buildings are to be sustained. Within this context, the scope and coverage of the journal incorporates the following indicative topics: • Behavioural and human responses • Building defects and prognosis • Building adaptation and retrofit • Building conservation and restoration • Building Information Modelling (BIM) • Building and planning regulations and legislation • Building technology • Conflict avoidance, management and disputes resolution • Digital information and communication technologies • Education and training • Environmental performance • Energy management • Health, safety and welfare issues • Healthy enclosures • Innovations and innovative technologies • Law and practice of dilapidation • Maintenance and refurbishment • Materials testing • Policy formulation and development • Project management • Resilience • Structural considerations • Surveying methodologies and techniques • Sustainability and climate change • Valuation and financial investment