{"title":"使用融合手工特征的多模式生物特征识别","authors":"H. Mehraj, A. H. Mir, Farkhanda Ana","doi":"10.1556/606.2023.00786","DOIUrl":null,"url":null,"abstract":"Multimodal biometric systems have been widely implemented in a variety of real-world scenarios due to their ability to overcome limitations associated with unimodal biometric systems. This paper is focused on the combination of the face, ear and gait in a unified multimodal biometric identification system using handcrafted features. These approaches provide robust and discriminative features to solve the biometric problem. In this research, speed up robust features and histogram of oriented gradients approaches have been used to extract features from face, ear and gait. The extracted features are optimized using genetic algorithm and classified using Levenberg-Marquardt backpropagation neural network. The system performance is evaluated on constrained and unconstrained dataset conditions.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal biometric recognition using fused handcrafted features\",\"authors\":\"H. Mehraj, A. H. Mir, Farkhanda Ana\",\"doi\":\"10.1556/606.2023.00786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal biometric systems have been widely implemented in a variety of real-world scenarios due to their ability to overcome limitations associated with unimodal biometric systems. This paper is focused on the combination of the face, ear and gait in a unified multimodal biometric identification system using handcrafted features. These approaches provide robust and discriminative features to solve the biometric problem. In this research, speed up robust features and histogram of oriented gradients approaches have been used to extract features from face, ear and gait. The extracted features are optimized using genetic algorithm and classified using Levenberg-Marquardt backpropagation neural network. The system performance is evaluated on constrained and unconstrained dataset conditions.\",\"PeriodicalId\":35003,\"journal\":{\"name\":\"Pollack Periodica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollack Periodica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/606.2023.00786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2023.00786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Multimodal biometric recognition using fused handcrafted features
Multimodal biometric systems have been widely implemented in a variety of real-world scenarios due to their ability to overcome limitations associated with unimodal biometric systems. This paper is focused on the combination of the face, ear and gait in a unified multimodal biometric identification system using handcrafted features. These approaches provide robust and discriminative features to solve the biometric problem. In this research, speed up robust features and histogram of oriented gradients approaches have been used to extract features from face, ear and gait. The extracted features are optimized using genetic algorithm and classified using Levenberg-Marquardt backpropagation neural network. The system performance is evaluated on constrained and unconstrained dataset conditions.
期刊介绍:
Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.