双层流体流动中内部孤立波的数值模拟

IF 0.3 Q4 MATHEMATICS
M. H. Hooi, W. Tiong, K. Tay, K. Chiew, S. Sze
{"title":"双层流体流动中内部孤立波的数值模拟","authors":"M. H. Hooi, W. Tiong, K. Tay, K. Chiew, S. Sze","doi":"10.11113/MATEMATIKA.V34.N2.1000","DOIUrl":null,"url":null,"abstract":"In this paper, we look at the propagation of internal solitary waves overthree different types of slowly varying region, i.e. a slowly increasing slope, a smoothbump and a parabolic mound in a two-layer fluid flow. The appropriate mathematicalmodel for this problem is the variable-coefficient extended Korteweg-de Vries equation.The governing equation is then solved numerically using the method of lines. Ournumerical simulations show that the internal solitary waves deforms adiabatically onthe slowly increasing slope. At the same time, a trailing shelf is generated as theinternal solitary wave propagates over the slope, which would then decompose intosecondary solitary waves or a wavetrain. On the other hand, when internal solitarywaves propagate over a smooth bump or a parabolic mound, a trailing shelf of negativepolarity would be generated as the results of the interaction of the internal solitarywave with the decreasing slope of the bump or the parabolic mound. The secondarysolitary waves is observed to be climbing the negative trailing shelf.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Simulation of Shoaling Internal Solitary Waves in Two-layer Fluid Flow\",\"authors\":\"M. H. Hooi, W. Tiong, K. Tay, K. Chiew, S. Sze\",\"doi\":\"10.11113/MATEMATIKA.V34.N2.1000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we look at the propagation of internal solitary waves overthree different types of slowly varying region, i.e. a slowly increasing slope, a smoothbump and a parabolic mound in a two-layer fluid flow. The appropriate mathematicalmodel for this problem is the variable-coefficient extended Korteweg-de Vries equation.The governing equation is then solved numerically using the method of lines. Ournumerical simulations show that the internal solitary waves deforms adiabatically onthe slowly increasing slope. At the same time, a trailing shelf is generated as theinternal solitary wave propagates over the slope, which would then decompose intosecondary solitary waves or a wavetrain. On the other hand, when internal solitarywaves propagate over a smooth bump or a parabolic mound, a trailing shelf of negativepolarity would be generated as the results of the interaction of the internal solitarywave with the decreasing slope of the bump or the parabolic mound. The secondarysolitary waves is observed to be climbing the negative trailing shelf.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V34.N2.1000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V34.N2.1000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们观察了内部孤立波在不同类型的缓变区域的传播,即两层流体流中的缓增斜坡、光滑凸起和抛物线丘。这个问题的适当数学模型是变系数扩展的Korteweg-de-Vries方程。然后用直线法对控制方程进行数值求解。我们的数值模拟表明,内部孤立波在缓慢增加的斜率上绝热变形。同时,当内部孤立波在斜坡上传播时,会产生尾架,然后分解为次级孤立波或波列。另一方面,当内部单行道在光滑凸块或抛物线土堆上传播时,由于内部单行道与凸块或抛物土堆斜率的减小相互作用,将产生负极性的拖尾架。观测到次级孤立波正在向负拖曳架爬升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Shoaling Internal Solitary Waves in Two-layer Fluid Flow
In this paper, we look at the propagation of internal solitary waves overthree different types of slowly varying region, i.e. a slowly increasing slope, a smoothbump and a parabolic mound in a two-layer fluid flow. The appropriate mathematicalmodel for this problem is the variable-coefficient extended Korteweg-de Vries equation.The governing equation is then solved numerically using the method of lines. Ournumerical simulations show that the internal solitary waves deforms adiabatically onthe slowly increasing slope. At the same time, a trailing shelf is generated as theinternal solitary wave propagates over the slope, which would then decompose intosecondary solitary waves or a wavetrain. On the other hand, when internal solitarywaves propagate over a smooth bump or a parabolic mound, a trailing shelf of negativepolarity would be generated as the results of the interaction of the internal solitarywave with the decreasing slope of the bump or the parabolic mound. The secondarysolitary waves is observed to be climbing the negative trailing shelf.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematika
Matematika MATHEMATICS-
自引率
25.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信