Yitong Wei, Lulu Zhou, Danjing Yang, Tianming Yao, Shuo Shi
{"title":"功能性纳米材料对干细胞的控制、成像和标记","authors":"Yitong Wei, Lulu Zhou, Danjing Yang, Tianming Yao, Shuo Shi","doi":"10.1142/S1793984418410076","DOIUrl":null,"url":null,"abstract":"Stem cells possess great potential for tissue regeneration due to their infrequent capability to differentiate into specialized some other cell lines. The progress of nanomaterials has been remarkable in recent years. Nanomaterials control cellular response by endocytosis, acting as scaffolding roles or nanocarriers and regulating extracellular matrix (ECM). Furthermore, some nanomaterials have outstanding optical and magnetic properties, so can be used for stem cells labeling and imaging which plays an essential role in defining the mechanisms governing stem-cells therapeutics. In this review, focus is put on recent developments in controlling the fate of stem cells and stem cells labeling and imaging by nanomaterials. The effect of nanomaterials based inorganic nanomaterials (e.g., carbon nanotubes, mesoporous silica nanoparticles, gold nanoparticles, etc.), organic materials (nanoscale topography), on the differentiation of mesenchymal stem cells, embryonic stem cells and cancer stem cells will be discussed. Optical imaging (fluorescence and up-conversion luminescence), magnetic resonance imaging and multimodal imaging by nanomaterials of stem cells will also be introduced.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793984418410076","citationCount":"1","resultStr":"{\"title\":\"Stem Cells Controlling, Imaging and Labeling by Functional Nanomaterials\",\"authors\":\"Yitong Wei, Lulu Zhou, Danjing Yang, Tianming Yao, Shuo Shi\",\"doi\":\"10.1142/S1793984418410076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem cells possess great potential for tissue regeneration due to their infrequent capability to differentiate into specialized some other cell lines. The progress of nanomaterials has been remarkable in recent years. Nanomaterials control cellular response by endocytosis, acting as scaffolding roles or nanocarriers and regulating extracellular matrix (ECM). Furthermore, some nanomaterials have outstanding optical and magnetic properties, so can be used for stem cells labeling and imaging which plays an essential role in defining the mechanisms governing stem-cells therapeutics. In this review, focus is put on recent developments in controlling the fate of stem cells and stem cells labeling and imaging by nanomaterials. The effect of nanomaterials based inorganic nanomaterials (e.g., carbon nanotubes, mesoporous silica nanoparticles, gold nanoparticles, etc.), organic materials (nanoscale topography), on the differentiation of mesenchymal stem cells, embryonic stem cells and cancer stem cells will be discussed. Optical imaging (fluorescence and up-conversion luminescence), magnetic resonance imaging and multimodal imaging by nanomaterials of stem cells will also be introduced.\",\"PeriodicalId\":44929,\"journal\":{\"name\":\"Nano Life\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793984418410076\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793984418410076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793984418410076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stem Cells Controlling, Imaging and Labeling by Functional Nanomaterials
Stem cells possess great potential for tissue regeneration due to their infrequent capability to differentiate into specialized some other cell lines. The progress of nanomaterials has been remarkable in recent years. Nanomaterials control cellular response by endocytosis, acting as scaffolding roles or nanocarriers and regulating extracellular matrix (ECM). Furthermore, some nanomaterials have outstanding optical and magnetic properties, so can be used for stem cells labeling and imaging which plays an essential role in defining the mechanisms governing stem-cells therapeutics. In this review, focus is put on recent developments in controlling the fate of stem cells and stem cells labeling and imaging by nanomaterials. The effect of nanomaterials based inorganic nanomaterials (e.g., carbon nanotubes, mesoporous silica nanoparticles, gold nanoparticles, etc.), organic materials (nanoscale topography), on the differentiation of mesenchymal stem cells, embryonic stem cells and cancer stem cells will be discussed. Optical imaging (fluorescence and up-conversion luminescence), magnetic resonance imaging and multimodal imaging by nanomaterials of stem cells will also be introduced.