可压缩空间和$\mathcal{E}\mathcal{Z}$-结构

Pub Date : 2020-07-15 DOI:10.4064/fm972-7-2021
C. Guilbault, Molly A. Moran, Kevin Schreve
{"title":"可压缩空间和$\\mathcal{E}\\mathcal{Z}$-结构","authors":"C. Guilbault, Molly A. Moran, Kevin Schreve","doi":"10.4064/fm972-7-2021","DOIUrl":null,"url":null,"abstract":"Bestvina introduced a $\\mathcal{Z}$-structure for a group $G$ to generalize the boundary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $\\mathcal{E}\\mathcal{Z}$-structure. In this paper, we show that fundamental groups of graphs of nonpositively curved Riemannian $n$-manifolds admit $\\mathcal{Z}$-structures and graphs of negatively curved or flat $n$-manifolds admit $\\mathcal{E}\\mathcal{Z}$-structures. This generalizes a recent result of the first two authors with Tirel, which put $\\mathcal{E}\\mathcal{Z}$-structures on Baumslag-Solitar groups and $\\mathcal{Z}$-structures on generalized Baumslag-Solitar groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Compressible spaces and $\\\\mathcal{E}\\\\mathcal{Z}$-structures\",\"authors\":\"C. Guilbault, Molly A. Moran, Kevin Schreve\",\"doi\":\"10.4064/fm972-7-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bestvina introduced a $\\\\mathcal{Z}$-structure for a group $G$ to generalize the boundary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $\\\\mathcal{E}\\\\mathcal{Z}$-structure. In this paper, we show that fundamental groups of graphs of nonpositively curved Riemannian $n$-manifolds admit $\\\\mathcal{Z}$-structures and graphs of negatively curved or flat $n$-manifolds admit $\\\\mathcal{E}\\\\mathcal{Z}$-structures. This generalizes a recent result of the first two authors with Tirel, which put $\\\\mathcal{E}\\\\mathcal{Z}$-structures on Baumslag-Solitar groups and $\\\\mathcal{Z}$-structures on generalized Baumslag-Solitar groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm972-7-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm972-7-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Bestvina为群$G$引入了$\mathcal{Z}$结构来推广CAT(0)或双曲群的边界。Farrell和Lafont对这一概念进行了改进,包括$G$-等变要求,并被称为$\mathcal{E}\mathcal{Z}$结构。在本文中,我们证明了非位置弯曲黎曼$n$-流形的图的基本群允许$\mathcal{Z}$-结构,负弯曲或平坦$n$$流形的图允许$\math{E}\mathcal{Z}$结构。这推广了前两位作者最近用Tirel的一个结果,该结果将$\mathcal{E}\mathcal{Z}$结构放在Baumslag孤立群上,将$\math{Z}$-结构放在广义Baumslage孤立群上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Compressible spaces and $\mathcal{E}\mathcal{Z}$-structures
Bestvina introduced a $\mathcal{Z}$-structure for a group $G$ to generalize the boundary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equivariance requirement, and is known as an $\mathcal{E}\mathcal{Z}$-structure. In this paper, we show that fundamental groups of graphs of nonpositively curved Riemannian $n$-manifolds admit $\mathcal{Z}$-structures and graphs of negatively curved or flat $n$-manifolds admit $\mathcal{E}\mathcal{Z}$-structures. This generalizes a recent result of the first two authors with Tirel, which put $\mathcal{E}\mathcal{Z}$-structures on Baumslag-Solitar groups and $\mathcal{Z}$-structures on generalized Baumslag-Solitar groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信