带系数的广义同调和上同调理论

IF 0.5 4区 数学
Inès Saihi
{"title":"带系数的广义同调和上同调理论","authors":"Inès Saihi","doi":"10.1007/s40062-017-0171-5","DOIUrl":null,"url":null,"abstract":"<p>For any Moore spectrum <i>M</i> and any homology theory <span>\\({{\\mathcal {H}}}_*\\)</span>, we associate a homology theory <span>\\({{\\mathcal {H}}}_*^M\\)</span> which is related to <span>\\({{\\mathcal {H}}}_*\\)</span> by a universal coefficient exact sequence of classical type. On the other hand the category of Moore spectra is not the category of <span>\\({\\mathbb {Z}}\\)</span>-modules, but it can be identified to a full subcategory of an abelian category <span>\\({{\\mathscr {D}}}\\)</span>. We prove that <span>\\({{\\mathcal {H}}}_*\\)</span> can be lifted to a homology theory <span>\\(\\widehat{{\\mathcal {H}}}_*\\)</span> with values in <span>\\({{\\mathscr {D}}}\\)</span> and we give a new universal coefficient exact sequence relating <span>\\({{\\mathcal {H}}}_*^M\\)</span> and <span>\\(\\widehat{{\\mathcal {H}}}_*\\)</span> which is in general more precise than the classical one. We prove also a similar result for cohomology theories and we illustrate its convenience by computing the real K-theory of Moore spaces.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"12 4","pages":"993 - 1007"},"PeriodicalIF":0.5000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0171-5","citationCount":"0","resultStr":"{\"title\":\"Generalized homology and cohomolgy theories with coefficients\",\"authors\":\"Inès Saihi\",\"doi\":\"10.1007/s40062-017-0171-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any Moore spectrum <i>M</i> and any homology theory <span>\\\\({{\\\\mathcal {H}}}_*\\\\)</span>, we associate a homology theory <span>\\\\({{\\\\mathcal {H}}}_*^M\\\\)</span> which is related to <span>\\\\({{\\\\mathcal {H}}}_*\\\\)</span> by a universal coefficient exact sequence of classical type. On the other hand the category of Moore spectra is not the category of <span>\\\\({\\\\mathbb {Z}}\\\\)</span>-modules, but it can be identified to a full subcategory of an abelian category <span>\\\\({{\\\\mathscr {D}}}\\\\)</span>. We prove that <span>\\\\({{\\\\mathcal {H}}}_*\\\\)</span> can be lifted to a homology theory <span>\\\\(\\\\widehat{{\\\\mathcal {H}}}_*\\\\)</span> with values in <span>\\\\({{\\\\mathscr {D}}}\\\\)</span> and we give a new universal coefficient exact sequence relating <span>\\\\({{\\\\mathcal {H}}}_*^M\\\\)</span> and <span>\\\\(\\\\widehat{{\\\\mathcal {H}}}_*\\\\)</span> which is in general more precise than the classical one. We prove also a similar result for cohomology theories and we illustrate its convenience by computing the real K-theory of Moore spaces.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"12 4\",\"pages\":\"993 - 1007\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0171-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0171-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0171-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意摩尔谱M和任意同调理论\({{\mathcal {H}}}_*\),我们用经典型的普适系数精确序列将一个与\({{\mathcal {H}}}_*\)相关的同调理论\({{\mathcal {H}}}_*^M\)联系起来。另一方面,摩尔谱的范畴不是\({\mathbb {Z}}\) -模的范畴,但它可以被识别为一个完整的阿贝尔范畴\({{\mathscr {D}}}\)的子范畴。我们证明了\({{\mathcal {H}}}_*\)可以提升到一个值在\({{\mathscr {D}}}\)的同调理论\(\widehat{{\mathcal {H}}}_*\),并给出了一个新的关于\({{\mathcal {H}}}_*^M\)和\(\widehat{{\mathcal {H}}}_*\)的普适系数精确序列,它在总体上比经典的更为精确。我们还证明了上同调理论的一个类似结果,并通过计算摩尔空间的实k理论说明了它的便利性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized homology and cohomolgy theories with coefficients

For any Moore spectrum M and any homology theory \({{\mathcal {H}}}_*\), we associate a homology theory \({{\mathcal {H}}}_*^M\) which is related to \({{\mathcal {H}}}_*\) by a universal coefficient exact sequence of classical type. On the other hand the category of Moore spectra is not the category of \({\mathbb {Z}}\)-modules, but it can be identified to a full subcategory of an abelian category \({{\mathscr {D}}}\). We prove that \({{\mathcal {H}}}_*\) can be lifted to a homology theory \(\widehat{{\mathcal {H}}}_*\) with values in \({{\mathscr {D}}}\) and we give a new universal coefficient exact sequence relating \({{\mathcal {H}}}_*^M\) and \(\widehat{{\mathcal {H}}}_*\) which is in general more precise than the classical one. We prove also a similar result for cohomology theories and we illustrate its convenience by computing the real K-theory of Moore spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信