当因果推理遇到深度学习

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yunan Luo, Jian Peng, Jianzhu Ma
{"title":"当因果推理遇到深度学习","authors":"Yunan Luo, Jian Peng, Jianzhu Ma","doi":"10.1038/s42256-020-0218-x","DOIUrl":null,"url":null,"abstract":"Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"2 8","pages":"426-427"},"PeriodicalIF":18.8000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s42256-020-0218-x","citationCount":"67","resultStr":"{\"title\":\"When causal inference meets deep learning\",\"authors\":\"Yunan Luo, Jian Peng, Jianzhu Ma\",\"doi\":\"10.1038/s42256-020-0218-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"2 8\",\"pages\":\"426-427\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s42256-020-0218-x\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-020-0218-x\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-020-0218-x","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 67

摘要

贝叶斯网络可以捕捉因果关系,但从数据中学习这样的网络却很难。最近的研究已将这一问题近似为一个连续优化任务,并可通过成熟的数值技术高效解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

When causal inference meets deep learning

When causal inference meets deep learning
Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信