Qiang Zhang, Zijian Ye, Siyu Shao, Tianlin Niu, Yuwei Zhao
{"title":"基于卷积循环关注网络的滚动轴承剩余使用寿命预测","authors":"Qiang Zhang, Zijian Ye, Siyu Shao, Tianlin Niu, Yuwei Zhao","doi":"10.1108/aa-08-2021-0113","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy.\n\n\nDesign/methodology/approach\nThe proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN.\n\n\nFindings\nCNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%.\n\n\nOriginality/value\nThis article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.\n","PeriodicalId":55448,"journal":{"name":"Assembly Automation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network\",\"authors\":\"Qiang Zhang, Zijian Ye, Siyu Shao, Tianlin Niu, Yuwei Zhao\",\"doi\":\"10.1108/aa-08-2021-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy.\\n\\n\\nDesign/methodology/approach\\nThe proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN.\\n\\n\\nFindings\\nCNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%.\\n\\n\\nOriginality/value\\nThis article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.\\n\",\"PeriodicalId\":55448,\"journal\":{\"name\":\"Assembly Automation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assembly Automation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/aa-08-2021-0113\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assembly Automation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/aa-08-2021-0113","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network
Purpose
The current studies on remaining useful life (RUL) prediction mainly rely on convolutional neural networks (CNNs) and long short-term memories (LSTMs) and do not take full advantage of the attention mechanism, resulting in lack of prediction accuracy. To further improve the performance of the above models, this study aims to propose a novel end-to-end RUL prediction framework, called convolutional recurrent attention network (CRAN) to achieve high accuracy.
Design/methodology/approach
The proposed CRAN is a CNN-LSTM-based model that effectively combines the powerful feature extraction ability of CNN and sequential processing capability of LSTM. The channel attention mechanism, spatial attention mechanism and LSTM attention mechanism are incorporated in CRAN, assigning different attention coefficients to CNN and LSTM. First, features of the bearing vibration data are extracted from both time and frequency domain. Next, the training and testing set are constructed. Then, the CRAN is trained offline using the training set. Finally, online RUL estimation is performed by applying data from the testing set to the trained CRAN.
Findings
CNN-LSTM-based models have higher RUL prediction accuracy than CNN-based and LSTM-based models. Using a combination of max pooling and average pooling can reduce the loss of feature information, and in addition, the structure of the serial attention mechanism is superior to the parallel attention structure. Comparing the proposed CRAN with six different state-of-the-art methods, for the predicted results of two testing bearings, the proposed CRAN has an average reduction in the root mean square error of 57.07/80.25%, an average reduction in the mean absolute error of 62.27/85.87% and an average improvement in score of 12.65/6.57%.
Originality/value
This article provides a novel end-to-end rolling bearing RUL prediction framework, which can provide a reference for the formulation of bearing maintenance programs in the industry.
期刊介绍:
Assembly Automation publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of assembly technology and automation, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of industry developments.
All research articles undergo rigorous double-blind peer review, and the journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations.