{"title":"关于不可约表示的等效简单奇点","authors":"I. A. Proskurnin","doi":"10.1134/S0016266323010057","DOIUrl":null,"url":null,"abstract":"<p> There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities Equivariantly Simple with Respect to Irreducible Representations\",\"authors\":\"I. A. Proskurnin\",\"doi\":\"10.1134/S0016266323010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323010057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Singularities Equivariantly Simple with Respect to Irreducible Representations
There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given.