关于不可约表示的等效简单奇点

Pub Date : 2023-09-05 DOI:10.1134/S0016266323010057
I. A. Proskurnin
{"title":"关于不可约表示的等效简单奇点","authors":"I. A. Proskurnin","doi":"10.1134/S0016266323010057","DOIUrl":null,"url":null,"abstract":"<p> There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities Equivariantly Simple with Respect to Irreducible Representations\",\"authors\":\"I. A. Proskurnin\",\"doi\":\"10.1134/S0016266323010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323010057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于有限群作用下不变或等变奇点的分类,已有许多文章。然而,由于问题比较困难,这些论文大多只考虑特殊情况,例如,一个特定的小阶群体的作用情况。本文试图证明关于等简单奇点的一般命题;即,对有限群不可约作用的等简奇点进行了分类。并给出了这种等简单奇异存在的一个判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Singularities Equivariantly Simple with Respect to Irreducible Representations

There are many papers on the classification of singularities that are invariant or equivariant under the action of a finite group. However, since the problem is difficult, most of these papers consider only special cases, for example, the case of the action of a particular group of small order. In this paper, an attempt is made to prove general statements about equivariantly simple singularities; namely, singularities equivariantly simple with respect to irreducible actions of finite groups are classified. A criterion for the existence of such equivariantly simple singularities is also given.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信