利用笛卡尔分解改进的数值半径不等式

IF 0.6 4区 数学 Q3 MATHEMATICS
P. Bhunia, S. Jana, M. S. Moslehian, K. Paul
{"title":"利用笛卡尔分解改进的数值半径不等式","authors":"P. Bhunia,&nbsp;S. Jana,&nbsp;M. S. Moslehian,&nbsp;K. Paul","doi":"10.1134/S0016266323010021","DOIUrl":null,"url":null,"abstract":"<p> We derive various lower bounds for the numerical radius <span>\\(w(A)\\)</span> of a bounded linear operator <span>\\(A\\)</span> defined on a complex Hilbert space, which improve the existing inequality <span>\\(w^2(A)\\geq \\frac{1}{4}\\|A^*A+AA^*\\|\\)</span>. In particular, for <span>\\(r\\geq 1\\)</span>, we show that </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 1","pages":"18 - 28"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Inequalities for Numerical Radius via Cartesian Decomposition\",\"authors\":\"P. Bhunia,&nbsp;S. Jana,&nbsp;M. S. Moslehian,&nbsp;K. Paul\",\"doi\":\"10.1134/S0016266323010021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We derive various lower bounds for the numerical radius <span>\\\\(w(A)\\\\)</span> of a bounded linear operator <span>\\\\(A\\\\)</span> defined on a complex Hilbert space, which improve the existing inequality <span>\\\\(w^2(A)\\\\geq \\\\frac{1}{4}\\\\|A^*A+AA^*\\\\|\\\\)</span>. In particular, for <span>\\\\(r\\\\geq 1\\\\)</span>, we show that </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 1\",\"pages\":\"18 - 28\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323010021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了复Hilbert空间上定义的有界线性算子\(A\)的数值半径\(w(A)\)的各种下界,改进了现有不等式\(w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|\)。特别地,对于\(r\geq 1\),我们展示了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Inequalities for Numerical Radius via Cartesian Decomposition

We derive various lower bounds for the numerical radius \(w(A)\) of a bounded linear operator \(A\) defined on a complex Hilbert space, which improve the existing inequality \(w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|\). In particular, for \(r\geq 1\), we show that

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信