{"title":"大型水平集图像的尺寸","authors":"A. O’Farrell, G. Armstrong","doi":"10.7146/math.scand.a-129246","DOIUrl":null,"url":null,"abstract":"Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\\colon E\\to \\mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\\alpha <1$ let $I_\\alpha (f)$ denote the set of values $y\\in \\mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\\alpha$. We consider how large can be the Hausdorff dimension of $I_\\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\\mathbb{R} $. We show that the sharp upper bound on $\\dim I_\\alpha (f)$ is $(1-\\alpha )/k$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension of images of large level sets\",\"authors\":\"A. O’Farrell, G. Armstrong\",\"doi\":\"10.7146/math.scand.a-129246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\\\\colon E\\\\to \\\\mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\\\\alpha <1$ let $I_\\\\alpha (f)$ denote the set of values $y\\\\in \\\\mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\\\\alpha$. We consider how large can be the Hausdorff dimension of $I_\\\\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\\\\mathbb{R} $. We show that the sharp upper bound on $\\\\dim I_\\\\alpha (f)$ is $(1-\\\\alpha )/k$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-129246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-129246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $k$ be a natural number. We consider $k$-times continuously differentiable real-valued functions $f\colon E\to \mathbb{R} $, where $E$ is some interval on the line having positive length. For $0<\alpha <1$ let $I_\alpha (f)$ denote the set of values $y\in \mathbb{R} $ whose preimage $f^{-1}(y)$ has Hausdorff dimension at least $\alpha$. We consider how large can be the Hausdorff dimension of $I_\alpha (f)$, as $f$ ranges over the set of all $k$-times continuously differentiable functions from $E$ into $\mathbb{R} $. We show that the sharp upper bound on $\dim I_\alpha (f)$ is $(1-\alpha )/k$.