D. Semenov, I. Vashkevich, A. S. Vladyko, O. Sviridov
{"title":"重组人乳铁蛋白与SARS-CoV-2病毒对肝素蛋白偶联物的相互作用","authors":"D. Semenov, I. Vashkevich, A. S. Vladyko, O. Sviridov","doi":"10.29235/1561-8323-2022-66-4-404-413","DOIUrl":null,"url":null,"abstract":"The advantages of the complex of recombinant human lactoferrin (rhLF) with europium ions have been used to establish quantitative parameters of specific interaction of rhLF with immobilized heparin-protein conjugate as a model of cell-surface heparan sulfate proteoglycans. Heparin coupled through terminal formyl by reductive amination to an inert protein was adsorbed through the protein part in the wells of a polystyrene microplate. The rhLF–Eu3+ complex obtained from native rhLF contains 0.8 mol of lanthanide ion per mol of protein (40 % saturation level). Equilibrium in the heterophase binding system is established within 1 min at room temperature, and the calculated association constant of the rhLF-heparin complex is 2.1 × 107 M–1. The reversible and saturable character of binding rhLF labeled by Eu3+ at the active site to heparin was confirmed by the transition of rhLF–Eu3+ into the liquid phase when a 1000-fold molar excess of unlabeled rhLF was added to the system. Based on the affinity of rhLF for glycosaminoglycan, a blocking effect of this protein on the binding of the SARS-CoV-2 virus to the immobilized heparin-protein conjugate that imitates proteoglycan on the host cell surface was revealed. Pretreatment of the adsorbed conjugate with a solution of rhLF (10 µg per well) reduces the specific binding of 100 ng of viral particles added to the well by approximately 80 %. The presented results allow one, in particular, to evaluate the integrity of the structure and activity of rhLF as a possible substance in food supplements and pharmaceuticals and may be useful in developing combined drugs for corona virus infection.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of recombinant human lactoferrin and SARS-CoV-2 virus to heparin-protein conjugate\",\"authors\":\"D. Semenov, I. Vashkevich, A. S. Vladyko, O. Sviridov\",\"doi\":\"10.29235/1561-8323-2022-66-4-404-413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advantages of the complex of recombinant human lactoferrin (rhLF) with europium ions have been used to establish quantitative parameters of specific interaction of rhLF with immobilized heparin-protein conjugate as a model of cell-surface heparan sulfate proteoglycans. Heparin coupled through terminal formyl by reductive amination to an inert protein was adsorbed through the protein part in the wells of a polystyrene microplate. The rhLF–Eu3+ complex obtained from native rhLF contains 0.8 mol of lanthanide ion per mol of protein (40 % saturation level). Equilibrium in the heterophase binding system is established within 1 min at room temperature, and the calculated association constant of the rhLF-heparin complex is 2.1 × 107 M–1. The reversible and saturable character of binding rhLF labeled by Eu3+ at the active site to heparin was confirmed by the transition of rhLF–Eu3+ into the liquid phase when a 1000-fold molar excess of unlabeled rhLF was added to the system. Based on the affinity of rhLF for glycosaminoglycan, a blocking effect of this protein on the binding of the SARS-CoV-2 virus to the immobilized heparin-protein conjugate that imitates proteoglycan on the host cell surface was revealed. Pretreatment of the adsorbed conjugate with a solution of rhLF (10 µg per well) reduces the specific binding of 100 ng of viral particles added to the well by approximately 80 %. The presented results allow one, in particular, to evaluate the integrity of the structure and activity of rhLF as a possible substance in food supplements and pharmaceuticals and may be useful in developing combined drugs for corona virus infection.\",\"PeriodicalId\":41825,\"journal\":{\"name\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29235/1561-8323-2022-66-4-404-413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2022-66-4-404-413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Interaction of recombinant human lactoferrin and SARS-CoV-2 virus to heparin-protein conjugate
The advantages of the complex of recombinant human lactoferrin (rhLF) with europium ions have been used to establish quantitative parameters of specific interaction of rhLF with immobilized heparin-protein conjugate as a model of cell-surface heparan sulfate proteoglycans. Heparin coupled through terminal formyl by reductive amination to an inert protein was adsorbed through the protein part in the wells of a polystyrene microplate. The rhLF–Eu3+ complex obtained from native rhLF contains 0.8 mol of lanthanide ion per mol of protein (40 % saturation level). Equilibrium in the heterophase binding system is established within 1 min at room temperature, and the calculated association constant of the rhLF-heparin complex is 2.1 × 107 M–1. The reversible and saturable character of binding rhLF labeled by Eu3+ at the active site to heparin was confirmed by the transition of rhLF–Eu3+ into the liquid phase when a 1000-fold molar excess of unlabeled rhLF was added to the system. Based on the affinity of rhLF for glycosaminoglycan, a blocking effect of this protein on the binding of the SARS-CoV-2 virus to the immobilized heparin-protein conjugate that imitates proteoglycan on the host cell surface was revealed. Pretreatment of the adsorbed conjugate with a solution of rhLF (10 µg per well) reduces the specific binding of 100 ng of viral particles added to the well by approximately 80 %. The presented results allow one, in particular, to evaluate the integrity of the structure and activity of rhLF as a possible substance in food supplements and pharmaceuticals and may be useful in developing combined drugs for corona virus infection.