基于随机响应技术的一类改进的敏感变量总体均值估计

IF 1.1 Q3 STATISTICS & PROBABILITY
Preeti Patidar, H. P. Singh
{"title":"基于随机响应技术的一类改进的敏感变量总体均值估计","authors":"Preeti Patidar, H. P. Singh","doi":"10.18187/pjsor.v19i3.2877","DOIUrl":null,"url":null,"abstract":"In this paper we have suggested a class of estimators of population mean of sensitive variable under optional randomized response technique as reported in Gupta et al  (2014). We have obtained the mean squared error  (MSE) of the suggested class of estimators up to the  first order of approximation. The optimum conditions are obtained at which the (MSE) of the  proposed class of estimators is minimum. An  empirical study is carried out to show the performance of the suggested class of estimators over existing estimators .It is found that the performance of proposed class of estimators is better than the existing estimators including Grover and Kaur (2019).","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Class of Estimators Of Population Mean of Sensitive Variable Using Optional Randomized Response Technique\",\"authors\":\"Preeti Patidar, H. P. Singh\",\"doi\":\"10.18187/pjsor.v19i3.2877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have suggested a class of estimators of population mean of sensitive variable under optional randomized response technique as reported in Gupta et al  (2014). We have obtained the mean squared error  (MSE) of the suggested class of estimators up to the  first order of approximation. The optimum conditions are obtained at which the (MSE) of the  proposed class of estimators is minimum. An  empirical study is carried out to show the performance of the suggested class of estimators over existing estimators .It is found that the performance of proposed class of estimators is better than the existing estimators including Grover and Kaur (2019).\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v19i3.2877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v19i3.2877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一类在可选随机响应技术下敏感变量总体均值的估计量,如Gupta等人(2014)所报道的。我们获得了所提出的一类估计量的均方误差(MSE),直到一阶近似。获得了所提出的一类估计量的(MSE)最小的最优条件。实证研究表明,所提出的一类估计量的性能优于现有估计量,发现所提出的这类估计量优于Grover和Kaur(2019)等现有估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Class of Estimators Of Population Mean of Sensitive Variable Using Optional Randomized Response Technique
In this paper we have suggested a class of estimators of population mean of sensitive variable under optional randomized response technique as reported in Gupta et al  (2014). We have obtained the mean squared error  (MSE) of the suggested class of estimators up to the  first order of approximation. The optimum conditions are obtained at which the (MSE) of the  proposed class of estimators is minimum. An  empirical study is carried out to show the performance of the suggested class of estimators over existing estimators .It is found that the performance of proposed class of estimators is better than the existing estimators including Grover and Kaur (2019).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信