基于聚类技术的商住建筑负荷分析

A. Olawumi, F. Dahunsi
{"title":"基于聚类技术的商住建筑负荷分析","authors":"A. Olawumi, F. Dahunsi","doi":"10.4314/njt.v42i2.14","DOIUrl":null,"url":null,"abstract":"Data mining is a promising tool used in processing energy data collected from energy consumers. The knowledge derived from energy data is very pertinent in the formulation of various demand-side management programs. This paper uses clustering techniques to segment the energy consumption patterns of residential and commercial buildings; situated at different geographical locations. The two (2) commonly used clustering techniques: K-Means and Agglomerative Hierarchical Clustering, were employed. The result indicates that the choice of clustering technique for load profiling is highly subjective to the nature of the dataset. Hence, using Davies-Bouldin Index (DB) Index and Silhouette Index (SI) as clustering indicators to select an optimum number of clusters and the best clustering technique. Hierarchical clustering was identified as the most appropriate clustering for the two buildings.","PeriodicalId":33360,"journal":{"name":"Nigerian Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load profiling of commercial and residential building using clustering technique\",\"authors\":\"A. Olawumi, F. Dahunsi\",\"doi\":\"10.4314/njt.v42i2.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is a promising tool used in processing energy data collected from energy consumers. The knowledge derived from energy data is very pertinent in the formulation of various demand-side management programs. This paper uses clustering techniques to segment the energy consumption patterns of residential and commercial buildings; situated at different geographical locations. The two (2) commonly used clustering techniques: K-Means and Agglomerative Hierarchical Clustering, were employed. The result indicates that the choice of clustering technique for load profiling is highly subjective to the nature of the dataset. Hence, using Davies-Bouldin Index (DB) Index and Silhouette Index (SI) as clustering indicators to select an optimum number of clusters and the best clustering technique. Hierarchical clustering was identified as the most appropriate clustering for the two buildings.\",\"PeriodicalId\":33360,\"journal\":{\"name\":\"Nigerian Journal of Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/njt.v42i2.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njt.v42i2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据挖掘是一种很有前途的工具,用于处理从能源消费者那里收集的能源数据。从能源数据中获得的知识在制定各种需求侧管理计划时非常相关。本文采用聚类技术对住宅和商业建筑的能耗模式进行了划分;位于不同的地理位置。采用了两种常用的聚类技术:K-Means和聚集层次聚类。结果表明,用于负载分析的聚类技术的选择对于数据集的性质是高度主观的。因此,使用Davies-Bouldin指数(DB)和Silhouette指数(SI)作为聚类指标来选择最佳聚类数量和最佳聚类技术。分层聚类被认为是最适合这两栋建筑的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load profiling of commercial and residential building using clustering technique
Data mining is a promising tool used in processing energy data collected from energy consumers. The knowledge derived from energy data is very pertinent in the formulation of various demand-side management programs. This paper uses clustering techniques to segment the energy consumption patterns of residential and commercial buildings; situated at different geographical locations. The two (2) commonly used clustering techniques: K-Means and Agglomerative Hierarchical Clustering, were employed. The result indicates that the choice of clustering technique for load profiling is highly subjective to the nature of the dataset. Hence, using Davies-Bouldin Index (DB) Index and Silhouette Index (SI) as clustering indicators to select an optimum number of clusters and the best clustering technique. Hierarchical clustering was identified as the most appropriate clustering for the two buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
126
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信