关于p-空间上群表示的等距性

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Gerasimova, A. Thom
{"title":"关于p-空间上群表示的等距性","authors":"M. Gerasimova, A. Thom","doi":"10.7900/jot.2020jan22.2275","DOIUrl":null,"url":null,"abstract":"In this note we consider a p-isometrisability property of discrete groups. If p=2 this property is equivalent to the well-studied notion of unitarisability. We prove that amenable groups are p-isometrisable for all p∈(1,∞). Conversely, we show that every group containing a non-abelian free subgroup is not p-isometrisable for any p∈(1,∞). We also discuss some open questions and possible relations of p-isometrisability with the recently introduced Littlewood exponent Lit(Γ).","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the isometrisability of group representations on p-spaces\",\"authors\":\"M. Gerasimova, A. Thom\",\"doi\":\"10.7900/jot.2020jan22.2275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we consider a p-isometrisability property of discrete groups. If p=2 this property is equivalent to the well-studied notion of unitarisability. We prove that amenable groups are p-isometrisable for all p∈(1,∞). Conversely, we show that every group containing a non-abelian free subgroup is not p-isometrisable for any p∈(1,∞). We also discuss some open questions and possible relations of p-isometrisability with the recently introduced Littlewood exponent Lit(Γ).\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020jan22.2275\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020jan22.2275","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这个注记中,我们考虑离散群的一个p-等距性质。如果p=2,这个性质等价于经过充分研究的可单位性概念。我们证明了适用群对所有p∈(1,∞)都是p-等距的。相反,我们证明了每个包含非阿贝尔自由子群的群对于任何p∈(1,∞)都不是p-等距的。我们还讨论了一些悬而未决的问题以及p-等距性与最近引入的Littlewood指数Lit(Γ)的可能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the isometrisability of group representations on p-spaces
In this note we consider a p-isometrisability property of discrete groups. If p=2 this property is equivalent to the well-studied notion of unitarisability. We prove that amenable groups are p-isometrisable for all p∈(1,∞). Conversely, we show that every group containing a non-abelian free subgroup is not p-isometrisable for any p∈(1,∞). We also discuss some open questions and possible relations of p-isometrisability with the recently introduced Littlewood exponent Lit(Γ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信