TiO2/初榨椰子油纳米流体热物理及稳定性的实验研究

Q2 Pharmacology, Toxicology and Pharmaceutics
Barlin Oemar, A. Arifin, D. Bahrin, Astuti Astuti, D. Ramadhan, Muhammad Abil Rifqy, Muhammad Reza Tinambunan
{"title":"TiO2/初榨椰子油纳米流体热物理及稳定性的实验研究","authors":"Barlin Oemar, A. Arifin, D. Bahrin, Astuti Astuti, D. Ramadhan, Muhammad Abil Rifqy, Muhammad Reza Tinambunan","doi":"10.26554/sti.2023.8.2.178-183","DOIUrl":null,"url":null,"abstract":"This paper shows experimental study results on the thermophysical and stability of nanofluids of Titanium oxide (TiO2) dispersed in high-purity of Virgin Coconut Oil (VCO). Nanofluid samples that functioned as a lubricant were prepared by a two-step preparation method at different volume fractions (0.1, 0.3, and 0.5 vol.%) and different temperatures (28, 40, and 100°C). The dynamic viscosity and density were performed using Falling Ball Viscometer and Pycnometer, respectively. The sedimentation photograph method using a digital camera was applied to analyze the stability. A maximum dynamic viscosity enhancement of 62.78% was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction and at the temperature of 100°C). Whereas, the highest density improvement was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction. Freshly prepared nanofluids did not show any significant change in stability. However, a trivial phase separation appeared in the samples after 8 days. The results indicated that adding TiO2 nanoparticles increased the dynamic viscosity and density. It can be concluded that the volume in fraction has the effect to enhance the thermophysical stability of TiO2/VCO nanofluids.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on Thermophysical and Stability Properties of TiO2/Virgin Coconut Oil Nanofluid\",\"authors\":\"Barlin Oemar, A. Arifin, D. Bahrin, Astuti Astuti, D. Ramadhan, Muhammad Abil Rifqy, Muhammad Reza Tinambunan\",\"doi\":\"10.26554/sti.2023.8.2.178-183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows experimental study results on the thermophysical and stability of nanofluids of Titanium oxide (TiO2) dispersed in high-purity of Virgin Coconut Oil (VCO). Nanofluid samples that functioned as a lubricant were prepared by a two-step preparation method at different volume fractions (0.1, 0.3, and 0.5 vol.%) and different temperatures (28, 40, and 100°C). The dynamic viscosity and density were performed using Falling Ball Viscometer and Pycnometer, respectively. The sedimentation photograph method using a digital camera was applied to analyze the stability. A maximum dynamic viscosity enhancement of 62.78% was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction and at the temperature of 100°C). Whereas, the highest density improvement was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction. Freshly prepared nanofluids did not show any significant change in stability. However, a trivial phase separation appeared in the samples after 8 days. The results indicated that adding TiO2 nanoparticles increased the dynamic viscosity and density. It can be concluded that the volume in fraction has the effect to enhance the thermophysical stability of TiO2/VCO nanofluids.\",\"PeriodicalId\":21644,\"journal\":{\"name\":\"Science and Technology Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26554/sti.2023.8.2.178-183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2023.8.2.178-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了分散在高纯度初榨椰子油(VCO)中的氧化钛(TiO2)纳米流体的热物理性质和稳定性的实验研究结果。通过两步制备方法在不同体积分数(0.1、0.3和0.5体积%)和不同温度(28、40和100°C)下制备具有润滑剂功能的纳米流体样品。分别使用落球粘度计和比重瓶测定动态粘度和密度。采用数码相机沉降照相法进行稳定性分析。在100°C的温度下,纳米颗粒体积分数为0.5%的TiO2/VCO纳米流体的最大动态粘度提高了62.78%)。然而,纳米颗粒体积分数为0.5%的TiO2/VCO纳米流体的密度提高最高。新制备的纳米流体在稳定性方面没有显示出任何显著变化。然而,8天后在样品中出现轻微的相分离。结果表明,TiO2纳米粒子的加入提高了动态粘度和密度。可以得出结论,分数中的体积对提高TiO2/VCO纳米流体的热物理稳定性具有作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation on Thermophysical and Stability Properties of TiO2/Virgin Coconut Oil Nanofluid
This paper shows experimental study results on the thermophysical and stability of nanofluids of Titanium oxide (TiO2) dispersed in high-purity of Virgin Coconut Oil (VCO). Nanofluid samples that functioned as a lubricant were prepared by a two-step preparation method at different volume fractions (0.1, 0.3, and 0.5 vol.%) and different temperatures (28, 40, and 100°C). The dynamic viscosity and density were performed using Falling Ball Viscometer and Pycnometer, respectively. The sedimentation photograph method using a digital camera was applied to analyze the stability. A maximum dynamic viscosity enhancement of 62.78% was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction and at the temperature of 100°C). Whereas, the highest density improvement was recorded for TiO2/VCO nanofluid with 0.5% nanoparticle volume fraction. Freshly prepared nanofluids did not show any significant change in stability. However, a trivial phase separation appeared in the samples after 8 days. The results indicated that adding TiO2 nanoparticles increased the dynamic viscosity and density. It can be concluded that the volume in fraction has the effect to enhance the thermophysical stability of TiO2/VCO nanofluids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信