利用分布鲁棒性改进样本均值逼近

E. Anderson, A. Philpott
{"title":"利用分布鲁棒性改进样本均值逼近","authors":"E. Anderson, A. Philpott","doi":"10.1287/ijoo.2021.0061","DOIUrl":null,"url":null,"abstract":"Sample average approximation is a popular approach to solving stochastic optimization problems. It has been widely observed that some form of robustification of these problems often improves the out-of-sample performance of the solution estimators. In estimation problems, this improvement boils down to a trade-off between the opposing effects of bias and shrinkage. This paper aims to characterize the features of more general optimization problems that exhibit this behaviour when a distributionally robust version of the sample average approximation problem is used. The paper restricts attention to quadratic problems for which sample average approximation solutions are unbiased and shows that expected out-of-sample performance can be calculated for small amounts of robustification and depends on the type of distributionally robust model used and properties of the underlying ground-truth probability distribution of random variables. The paper was written as part of a New Zealand funded research project that aimed to improve stochastic optimization methods in the electric power industry. The authors of the paper have worked together in this domain for the past 25 years.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improving Sample Average Approximation Using Distributional Robustness\",\"authors\":\"E. Anderson, A. Philpott\",\"doi\":\"10.1287/ijoo.2021.0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sample average approximation is a popular approach to solving stochastic optimization problems. It has been widely observed that some form of robustification of these problems often improves the out-of-sample performance of the solution estimators. In estimation problems, this improvement boils down to a trade-off between the opposing effects of bias and shrinkage. This paper aims to characterize the features of more general optimization problems that exhibit this behaviour when a distributionally robust version of the sample average approximation problem is used. The paper restricts attention to quadratic problems for which sample average approximation solutions are unbiased and shows that expected out-of-sample performance can be calculated for small amounts of robustification and depends on the type of distributionally robust model used and properties of the underlying ground-truth probability distribution of random variables. The paper was written as part of a New Zealand funded research project that aimed to improve stochastic optimization methods in the electric power industry. The authors of the paper have worked together in this domain for the past 25 years.\",\"PeriodicalId\":73382,\"journal\":{\"name\":\"INFORMS journal on optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS journal on optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ijoo.2021.0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

样本平均逼近是求解随机优化问题的一种常用方法。人们已经广泛观察到,这些问题的某种形式的鲁棒性通常会提高解估计量的样本外性能。在估计问题中,这种改进可以归结为偏差和收缩的相反影响之间的权衡。本文旨在描述当使用样本平均逼近问题的分布鲁棒版本时表现出这种行为的更一般的优化问题的特征。本文将注意力限制在样本平均近似解无偏的二次问题上,并表明可以在少量鲁棒性的情况下计算预期的样本外性能,这取决于所使用的分布鲁棒模型的类型和随机变量的基本真实概率分布的性质。这篇论文是新西兰资助的一个研究项目的一部分,该项目旨在改进电力行业的随机优化方法。这篇论文的作者在过去的25年里一直在这个领域合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Sample Average Approximation Using Distributional Robustness
Sample average approximation is a popular approach to solving stochastic optimization problems. It has been widely observed that some form of robustification of these problems often improves the out-of-sample performance of the solution estimators. In estimation problems, this improvement boils down to a trade-off between the opposing effects of bias and shrinkage. This paper aims to characterize the features of more general optimization problems that exhibit this behaviour when a distributionally robust version of the sample average approximation problem is used. The paper restricts attention to quadratic problems for which sample average approximation solutions are unbiased and shows that expected out-of-sample performance can be calculated for small amounts of robustification and depends on the type of distributionally robust model used and properties of the underlying ground-truth probability distribution of random variables. The paper was written as part of a New Zealand funded research project that aimed to improve stochastic optimization methods in the electric power industry. The authors of the paper have worked together in this domain for the past 25 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信