随机模型中有一个P-测度

Pub Date : 2022-04-25 DOI:10.4064/fm277-3-2023
Piotr Borodulin-Nadzieja, Damian Sobota
{"title":"随机模型中有一个P-测度","authors":"Piotr Borodulin-Nadzieja, Damian Sobota","doi":"10.4064/fm277-3-2023","DOIUrl":null,"url":null,"abstract":"We say that a finitely additive probability measure $\\mu$ on $\\omega$ is \\emph{a P-measure} if it vanishes on points and for each decreasing sequence $(E_n)$ of infinite subsets of $\\omega$ there is $E\\subseteq\\omega$ such that $E\\subseteq^* E_n$ for each $n\\in\\omega$ and $\\mu(E) = \\lim_{n\\to\\infty}\\mu(E_n)$. Thus, P-measures generalize in a natural way P-points and it is known that, similarly as in the case of P-points, their existence is independent of $\\mathsf{ZFC}$. In this paper we show that there is a P-measure in the model obtained by adding any number of random reals to a model of $\\mathsf{CH}$. As a corollary, we obtain that in the classical random model $\\omega^*$ contains a nowhere dense ccc closed P-set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"There is a P-measure in the random model\",\"authors\":\"Piotr Borodulin-Nadzieja, Damian Sobota\",\"doi\":\"10.4064/fm277-3-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a finitely additive probability measure $\\\\mu$ on $\\\\omega$ is \\\\emph{a P-measure} if it vanishes on points and for each decreasing sequence $(E_n)$ of infinite subsets of $\\\\omega$ there is $E\\\\subseteq\\\\omega$ such that $E\\\\subseteq^* E_n$ for each $n\\\\in\\\\omega$ and $\\\\mu(E) = \\\\lim_{n\\\\to\\\\infty}\\\\mu(E_n)$. Thus, P-measures generalize in a natural way P-points and it is known that, similarly as in the case of P-points, their existence is independent of $\\\\mathsf{ZFC}$. In this paper we show that there is a P-measure in the model obtained by adding any number of random reals to a model of $\\\\mathsf{CH}$. As a corollary, we obtain that in the classical random model $\\\\omega^*$ contains a nowhere dense ccc closed P-set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm277-3-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm277-3-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们说$\omega$上的有限可加概率测度$\mu$是\emph{p测度},如果它在点上消失,并且对于$\omega$的无限子集的每个递减序列$(E_n)$,存在$E\subseteq\omega$,使得$E\subseteq^* E_n$对于$n\in\omega$和$\mu(E) = \lim_{n\to\infty}\mu(E_n)$。因此,p测度以一种自然的方式概括p点,并且我们知道,与p点的情况类似,它们的存在与$\mathsf{ZFC}$无关。在本文中,我们证明了在$\mathsf{CH}$模型中加入任意数量的随机实数所得到的模型中存在p测度。作为一个推论,我们得到在经典随机模型$\omega^*$中包含一个无处稠密的ccc闭p集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
There is a P-measure in the random model
We say that a finitely additive probability measure $\mu$ on $\omega$ is \emph{a P-measure} if it vanishes on points and for each decreasing sequence $(E_n)$ of infinite subsets of $\omega$ there is $E\subseteq\omega$ such that $E\subseteq^* E_n$ for each $n\in\omega$ and $\mu(E) = \lim_{n\to\infty}\mu(E_n)$. Thus, P-measures generalize in a natural way P-points and it is known that, similarly as in the case of P-points, their existence is independent of $\mathsf{ZFC}$. In this paper we show that there is a P-measure in the model obtained by adding any number of random reals to a model of $\mathsf{CH}$. As a corollary, we obtain that in the classical random model $\omega^*$ contains a nowhere dense ccc closed P-set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信