非阿贝尔Volterra格与Toda格之间的Miura型变换及带算子的逆谱问题

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A. Osipov
{"title":"非阿贝尔Volterra格与Toda格之间的Miura型变换及带算子的逆谱问题","authors":"A. Osipov","doi":"10.1134/S1061920823030093","DOIUrl":null,"url":null,"abstract":"<p> We study a discrete Miura-type transformation between the hierarcies of non-Abelian semi-infinite Volterra (Kac–van Moerbeke) and Toda lattices with operator coefficients in terms of the inverse spectral problem for three-diagonal band operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl operator-valued function, can be used in solving initial-boundary value problem for the systems of both these hierarchies. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra hierarchy and the Toda sub-hierarchy which can be characterized via Lax operators corresponding to its lattices. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"382 - 396"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miura Type Transform Between Non-Abelian Volterra and Toda Lattices and Inverse Spectral Problem for Band Operators\",\"authors\":\"A. Osipov\",\"doi\":\"10.1134/S1061920823030093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study a discrete Miura-type transformation between the hierarcies of non-Abelian semi-infinite Volterra (Kac–van Moerbeke) and Toda lattices with operator coefficients in terms of the inverse spectral problem for three-diagonal band operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl operator-valued function, can be used in solving initial-boundary value problem for the systems of both these hierarchies. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra hierarchy and the Toda sub-hierarchy which can be characterized via Lax operators corresponding to its lattices. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 3\",\"pages\":\"382 - 396\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823030093\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823030093","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有算子系数的非abelian半无限Volterra (Kac-van Moerbeke)格和Toda格之间的离散miura型变换,并讨论了这类系统在Lax表示中出现的三对角带算子的逆谱问题。这种反问题方法,相当于从其Weyl算子值函数的矩重构算子,可用于解决这两种层次系统的初边值问题。结果表明,Miura变换可以很容易地用这些矩来描述。利用这一描述,我们建立了Volterra层次和Toda子层次之间的双射,该双射可以通过对应于其格的Lax算子来表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miura Type Transform Between Non-Abelian Volterra and Toda Lattices and Inverse Spectral Problem for Band Operators

We study a discrete Miura-type transformation between the hierarcies of non-Abelian semi-infinite Volterra (Kac–van Moerbeke) and Toda lattices with operator coefficients in terms of the inverse spectral problem for three-diagonal band operators, which appear in the Lax representation for such systems. This inverse problem method, which amounts to reconstruction of the operator from the moments of its Weyl operator-valued function, can be used in solving initial-boundary value problem for the systems of both these hierarchies. It is shown that the Miura transformation can be easily described in terms of these moments. Using this description we establish a bijection between the Volterra hierarchy and the Toda sub-hierarchy which can be characterized via Lax operators corresponding to its lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信