{"title":"具有奇异摄动Neumann边界条件的奇异摄动积分微分方程的边值问题","authors":"N. N. Nefedov, A. G. Nikitin, E. I. Nikulin","doi":"10.1134/S1061920823030081","DOIUrl":null,"url":null,"abstract":"<p> We consider a boundary-value problem for singularly perturbed integro-differential equation describing stationary reaction–diffusion processes with due account of nonlocal interactions. The principal feature of the problem is the presence of a singularly perturbed Neumann condition describing intense flows on the boundary. We prove that there exists a boundary-layer solution, construct its asymptotic approximation, and establish its asymptotic Lyapunov stability. Illustrative examples are given. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"375 - 381"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary-Value Problem for Singularly Perturbed Integro-Differential Equation with Singularly Perturbed Neumann Boundary Condition\",\"authors\":\"N. N. Nefedov, A. G. Nikitin, E. I. Nikulin\",\"doi\":\"10.1134/S1061920823030081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a boundary-value problem for singularly perturbed integro-differential equation describing stationary reaction–diffusion processes with due account of nonlocal interactions. The principal feature of the problem is the presence of a singularly perturbed Neumann condition describing intense flows on the boundary. We prove that there exists a boundary-layer solution, construct its asymptotic approximation, and establish its asymptotic Lyapunov stability. Illustrative examples are given. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 3\",\"pages\":\"375 - 381\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823030081\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823030081","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Boundary-Value Problem for Singularly Perturbed Integro-Differential Equation with Singularly Perturbed Neumann Boundary Condition
We consider a boundary-value problem for singularly perturbed integro-differential equation describing stationary reaction–diffusion processes with due account of nonlocal interactions. The principal feature of the problem is the presence of a singularly perturbed Neumann condition describing intense flows on the boundary. We prove that there exists a boundary-layer solution, construct its asymptotic approximation, and establish its asymptotic Lyapunov stability. Illustrative examples are given.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.