{"title":"具有记忆的粘弹性连续体非齐次动力问题的弱可解性","authors":"V. G. Zvyagin, V. P. Orlov","doi":"10.1134/S0016266323010082","DOIUrl":null,"url":null,"abstract":"<p> The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 1","pages":"74 - 79"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory\",\"authors\":\"V. G. Zvyagin, V. P. Orlov\",\"doi\":\"10.1134/S0016266323010082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 1\",\"pages\":\"74 - 79\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323010082\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010082","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory
The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.