{"title":"具有记忆的粘弹性连续体非齐次动力问题的弱可解性","authors":"V. G. Zvyagin, V. P. Orlov","doi":"10.1134/S0016266323010082","DOIUrl":null,"url":null,"abstract":"<p> The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory\",\"authors\":\"V. G. Zvyagin, V. P. Orlov\",\"doi\":\"10.1134/S0016266323010082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323010082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323010082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Weak Solvability of an Inhomogeneous Dynamic Problem for a Viscoelastic Continuum with Memory
The existence of a weak solution to the initial boundary value problem for the equations of motion of a viscoelastic fluid with memory along the trajectories of a nonsmooth velocity field with inhomogeneous boundary condition is proved. The analysis involves Galerkin-type approximations of the original problem followed by the passage to the limit based on a priori estimates. To study the behavior of trajectories of a nonsmooth velocity field, the theory of regular Lagrangian flows is used.