弹性力学的弱对称混合有限元分析

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
P. Lederer, R. Stenberg
{"title":"弹性力学的弱对称混合有限元分析","authors":"P. Lederer, R. Stenberg","doi":"10.1090/mcom/3865","DOIUrl":null,"url":null,"abstract":"We consider mixed finite element methods for linear elasticity where the symmetry of the stress tensor is weakly enforced. Both an a priori and a posteriori error analysis are given for several known families of methods that are uniformly valid in the incompressible limit. A posteriori estimates are derived for both the compressible and incompressible cases. The results are verified by numerical examples.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of weakly symmetric mixed finite elements for elasticity\",\"authors\":\"P. Lederer, R. Stenberg\",\"doi\":\"10.1090/mcom/3865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider mixed finite element methods for linear elasticity where the symmetry of the stress tensor is weakly enforced. Both an a priori and a posteriori error analysis are given for several known families of methods that are uniformly valid in the incompressible limit. A posteriori estimates are derived for both the compressible and incompressible cases. The results are verified by numerical examples.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3865\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3865","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑线性弹性的混合有限元方法,其中应力张量的对称性是弱强制的。对于几个已知的在不可压缩极限下一致有效的方法族,给出了先验和后验误差分析。推导了可压缩和不可压缩情况下的后验估计。数值算例验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of weakly symmetric mixed finite elements for elasticity
We consider mixed finite element methods for linear elasticity where the symmetry of the stress tensor is weakly enforced. Both an a priori and a posteriori error analysis are given for several known families of methods that are uniformly valid in the incompressible limit. A posteriori estimates are derived for both the compressible and incompressible cases. The results are verified by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信