微波消解-树脂纯化-双峰MC-ICP-MS法分析环境标准物质的镉同位素

IF 3.4 2区 化学 Q1 SPECTROSCOPY
Yongguang Yin, Yong Liang
{"title":"微波消解-树脂纯化-双峰MC-ICP-MS法分析环境标准物质的镉同位素","authors":"Yongguang Yin, Yong Liang","doi":"10.46770/as.2021.1109","DOIUrl":null,"url":null,"abstract":"Cadmium isotope fractionation is a promising indicator for tracing the source, transport, and transformation of Cd in the environment; therefore, a high-precision method for the Cd isotope analysis of environmental samples is urgently required. In this study, eight environmental reference materials (NIST 2711a, GSS-1, GSS-4, GSS-5, GSD-11, GSD-12, GSD-30, and BCR679) with different matrices were digested under microwave irradiation and purified via anion exchange. Thereafter, their Cd isotope ratios were analyzed using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) with double-spike correction. The samples digested under microwave irradiation exhibited high Cd recovery (> 96%). One step of anion-exchangebased purification can remove most interfering elements without any detectable loss of Cd. If the purified solution contained Zn/Cd > 0.04, Zr/Cd > 0.01, Mo/Cd > 0.2, Pd/Cd > 4 × 10, In/Cd > 0.02, or Sn/Cd > 0.1, a secondary step using the same purification procedure would be necessary. The measured δCd values of reference materials (from −0.558 to 0.550‰) were in adequate agreement with those of previous studies, suggesting that this method can be used to analyze the Cd isotope ratios in soil, sediment, and plant samples. In addition, the large variation in the Cd isotope ratios of these reference materials implies that the Cd isotope ratio is promising for identifying pollution sources and the biogeochemical cycle of Cd.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cadmium Isotope Analysis Of Environmental Reference Materials Via Microwave Digestion–Resin Purification–Double-Spike MC-ICP-MS\",\"authors\":\"Yongguang Yin, Yong Liang\",\"doi\":\"10.46770/as.2021.1109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium isotope fractionation is a promising indicator for tracing the source, transport, and transformation of Cd in the environment; therefore, a high-precision method for the Cd isotope analysis of environmental samples is urgently required. In this study, eight environmental reference materials (NIST 2711a, GSS-1, GSS-4, GSS-5, GSD-11, GSD-12, GSD-30, and BCR679) with different matrices were digested under microwave irradiation and purified via anion exchange. Thereafter, their Cd isotope ratios were analyzed using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) with double-spike correction. The samples digested under microwave irradiation exhibited high Cd recovery (> 96%). One step of anion-exchangebased purification can remove most interfering elements without any detectable loss of Cd. If the purified solution contained Zn/Cd > 0.04, Zr/Cd > 0.01, Mo/Cd > 0.2, Pd/Cd > 4 × 10, In/Cd > 0.02, or Sn/Cd > 0.1, a secondary step using the same purification procedure would be necessary. The measured δCd values of reference materials (from −0.558 to 0.550‰) were in adequate agreement with those of previous studies, suggesting that this method can be used to analyze the Cd isotope ratios in soil, sediment, and plant samples. In addition, the large variation in the Cd isotope ratios of these reference materials implies that the Cd isotope ratio is promising for identifying pollution sources and the biogeochemical cycle of Cd.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2021.1109\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2021.1109","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

镉同位素分馏是追踪环境中镉的来源、迁移和转化的一个很有前途的指标;因此,迫切需要一种高精度的环境样品Cd同位素分析方法。在本研究中,八种具有不同基质的环境参考物质(NIST 2711a、GSS-1、GSS-4、GSS-5、GSD-11、GSD-12、GSD-30和BCR679)在微波辐射下被消化,并通过阴离子交换进行纯化。之后,使用具有双尖峰校正的多收集器电感耦合等离子体质谱法(MC-ICP-MS)分析它们的Cd同位素比率。在微波辐射下消化的样品显示出高的Cd回收率(>96%)。基于阴离子交换的纯化一步可以去除大多数干扰元素,而没有任何可检测到的Cd损失。如果纯化溶液中Zn/Cd>0.04、Zr/Cd>0.01、Mo/Cd>0.2、Pd/Cd>4×10、In/Cd>0.02或Sn/Cd>0.1,则需要使用相同纯化程序的第二步。标准物质的δCd测量值(从−0.558‰到0.550‰)与以前的研究结果完全一致,表明该方法可用于分析土壤、沉积物和植物样品中的Cd同位素比率。此外,这些参考物质的Cd同位素比值变化很大,这表明Cd同位素比值有助于识别污染源和Cd的生物地球化学循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cadmium Isotope Analysis Of Environmental Reference Materials Via Microwave Digestion–Resin Purification–Double-Spike MC-ICP-MS
Cadmium isotope fractionation is a promising indicator for tracing the source, transport, and transformation of Cd in the environment; therefore, a high-precision method for the Cd isotope analysis of environmental samples is urgently required. In this study, eight environmental reference materials (NIST 2711a, GSS-1, GSS-4, GSS-5, GSD-11, GSD-12, GSD-30, and BCR679) with different matrices were digested under microwave irradiation and purified via anion exchange. Thereafter, their Cd isotope ratios were analyzed using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) with double-spike correction. The samples digested under microwave irradiation exhibited high Cd recovery (> 96%). One step of anion-exchangebased purification can remove most interfering elements without any detectable loss of Cd. If the purified solution contained Zn/Cd > 0.04, Zr/Cd > 0.01, Mo/Cd > 0.2, Pd/Cd > 4 × 10, In/Cd > 0.02, or Sn/Cd > 0.1, a secondary step using the same purification procedure would be necessary. The measured δCd values of reference materials (from −0.558 to 0.550‰) were in adequate agreement with those of previous studies, suggesting that this method can be used to analyze the Cd isotope ratios in soil, sediment, and plant samples. In addition, the large variation in the Cd isotope ratios of these reference materials implies that the Cd isotope ratio is promising for identifying pollution sources and the biogeochemical cycle of Cd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信