Alvaro J. Flórez, I. Van Keilegom, G. Molenberghs, A. Verhasselt
{"title":"基于多元广义双曲分布的纵向数据的分位数回归","authors":"Alvaro J. Flórez, I. Van Keilegom, G. Molenberghs, A. Verhasselt","doi":"10.1177/1471082X211015454","DOIUrl":null,"url":null,"abstract":"While extensive research has been devoted to univariate quantile regression, this is considerably less the case for the multivariate (longitudinal) version, even though there are many potential applications, such as the joint examination of growth curves for two or more growth characteristics, such as body weight and length in infants. Quantile functions are easier to interpret for a population of curves than mean functions. While the connection between multivariate quantiles and the multivariate asymmetric Laplace distribution is known, it is less well known that its use for maximum likelihood estimation poses mathematical as well as computational challenges. Therefore, we study a broader family of multivariate generalized hyperbolic distributions, of which the multivariate asymmetric Laplace distribution is a limiting case. We offer an asymptotic treatment. Simulations and a data example supplement the modelling and theoretical considerations.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X211015454","citationCount":"0","resultStr":"{\"title\":\"Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution\",\"authors\":\"Alvaro J. Flórez, I. Van Keilegom, G. Molenberghs, A. Verhasselt\",\"doi\":\"10.1177/1471082X211015454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While extensive research has been devoted to univariate quantile regression, this is considerably less the case for the multivariate (longitudinal) version, even though there are many potential applications, such as the joint examination of growth curves for two or more growth characteristics, such as body weight and length in infants. Quantile functions are easier to interpret for a population of curves than mean functions. While the connection between multivariate quantiles and the multivariate asymmetric Laplace distribution is known, it is less well known that its use for maximum likelihood estimation poses mathematical as well as computational challenges. Therefore, we study a broader family of multivariate generalized hyperbolic distributions, of which the multivariate asymmetric Laplace distribution is a limiting case. We offer an asymptotic treatment. Simulations and a data example supplement the modelling and theoretical considerations.\",\"PeriodicalId\":49476,\"journal\":{\"name\":\"Statistical Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1471082X211015454\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1471082X211015454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211015454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Quantile regression for longitudinal data via the multivariate generalized hyperbolic distribution
While extensive research has been devoted to univariate quantile regression, this is considerably less the case for the multivariate (longitudinal) version, even though there are many potential applications, such as the joint examination of growth curves for two or more growth characteristics, such as body weight and length in infants. Quantile functions are easier to interpret for a population of curves than mean functions. While the connection between multivariate quantiles and the multivariate asymmetric Laplace distribution is known, it is less well known that its use for maximum likelihood estimation poses mathematical as well as computational challenges. Therefore, we study a broader family of multivariate generalized hyperbolic distributions, of which the multivariate asymmetric Laplace distribution is a limiting case. We offer an asymptotic treatment. Simulations and a data example supplement the modelling and theoretical considerations.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.