Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann
{"title":"网络时间同步协议中隐蔽信道的威胁","authors":"Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann","doi":"10.13052/jcsm2245-1439.1123","DOIUrl":null,"url":null,"abstract":"Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels.\nThis paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Threat of Covert Channels in Network Time Synchronisation Protocols\",\"authors\":\"Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann\",\"doi\":\"10.13052/jcsm2245-1439.1123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels.\\nThis paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
The Threat of Covert Channels in Network Time Synchronisation Protocols
Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels.
This paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.
期刊介绍:
Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.