网络时间同步协议中隐蔽信道的威胁

Q3 Computer Science
Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann
{"title":"网络时间同步协议中隐蔽信道的威胁","authors":"Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann","doi":"10.13052/jcsm2245-1439.1123","DOIUrl":null,"url":null,"abstract":"Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels.\nThis paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Threat of Covert Channels in Network Time Synchronisation Protocols\",\"authors\":\"Kevin Lamshöft, Jonas Hielscher, Christian Krätzer, J. Dittmann\",\"doi\":\"10.13052/jcsm2245-1439.1123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels.\\nThis paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.\",\"PeriodicalId\":37820,\"journal\":{\"name\":\"Journal of Cyber Security and Mobility\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cyber Security and Mobility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jcsm2245-1439.1123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

同步时钟对于信息技术(IT)和操作技术(OT)网络中的大多数通信场景至关重要。时间同步过程需要传输通常源自外部来源的高精度时间戳。在本文中,我们分析了时间同步协议如何通过作为网络隐蔽信道的载体来施加威胁。本文是我们的开放访问论文[15]的扩展版本,在该论文中,我们对与隐蔽信道有关的网络时间协议(NTP)进行了深入分析。在这个扩展版本中,我们拓宽了视野,以更通用的方式看待时间同步,因为我们提供了两种关于隐蔽信道的全面威胁场景,并讨论了这种隐蔽信道对另一种时间同步协议的适用性,即精确时间协议PTP。虽然网络时间协议(NTP)是IT网络中用于同步时钟的最普遍的协议,但由于对准确性和分辨率的更高要求,精确时间协议(PTP)主要出现在工业控制系统(ICS)的网络中。为了说明此类协议中隐蔽通道的威胁,我们描述了两种威胁场景,一种用于网络时间协议,另一种用于精确时间协议。对于NTP,我们对隐蔽通道进行了系统深入的分析。通过应用基于隐蔽通道模式的分类法,我们的分析结果识别了49个隐蔽通道。基于九个选定关键属性的总结和比较表明,NTP证明自己是隐蔽信道的合理载体。分析结果针对六个主要操作系统中NTP实现的常见行为进行了评估。选择并实施了两个通道,以在网络测试台中进行评估。通过将加密的高熵数据隐藏在NTP的高熵字段中,我们在第一次评估中表明,在NTP中可以实现实际无法检测的通道,从而推动了所需的进一步研究。在我们的评估中,我们分析了来自公共NTP服务器提供商的40000个NTP服务器响应,并讨论了潜在的对策。最后,我们讨论了这些发现对精确时间协议的相关性、适用性和由此产生的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Threat of Covert Channels in Network Time Synchronisation Protocols
Synchronized clocks are vital for most communication scenarios in networks of Information Technology (IT) and Operational Technology (OT). The process of time synchronisation requires transmission of high-precision timestamps often originating from external sources. In this paper, we analyze how time synchronization protocols impose a threat by being leveraged as carrier for network covert channels. This paper is an extended version version of our open-access paper [15] in which we performed an in-depth analysis of the Network Time Protocol (NTP) in regards to covert channels. In this extended version, we broaden the view and take a look and time synchronisation in a more general way as we provide two comprehensive threat scenarios regarding covert channels and discuss the applicability of such covert channels to another time synchronisation protocol, namely the Precision Time Protocol, PTP. While the Network Time Protocol (NTP) is the most prevalent protocol for synchronizing clocks in IT networks, the Precision Time Protocol (PTP) is mostly found in networks of Industrial Control Systems (ICS) due to higher demands regarding accuracy and resolution. To illustrate the threat of covert channels in such protocols we describe two threat scenarios, one for the Network Time Protocol and one for the Precision Time Protocol. For NTP we perform a systematic in-depth analysis of covert channels. Our analysis results in the identification of 49 covert channels, by applying a covert channel pattern-based taxonomy. The summary and comparison based on nine selected key attributes show that NTP proofs itself as a plausible carrier for covert channels. The analysis results are evaluated in regards to common behavior of NTP implementations in six major operating systems. Two channels are selected and implemented to be evaluated in network test-beds. By hiding encrypted high entropy data in a high entropy field of NTP we show in our first assessment that practically undetectable channels can be implemented in NTP, motivating the required further research. In our evaluation, we analyze 40,000 NTP server responses from public NTP server providers and discuss potential countermeasures. Finally, we discuss the relevance, applicability and resulting threat of these findings for the Precision Time Protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信