一元化与\( \mathcal{P} \mathcal{T} \) -对称非自伴随拟周期算子

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D. I. Borisov, A. A. Fedotov
{"title":"一元化与\\( \\mathcal{P} \\mathcal{T} \\) -对称非自伴随拟周期算子","authors":"D. I. Borisov,&nbsp;A. A. Fedotov","doi":"10.1134/S1061920823030032","DOIUrl":null,"url":null,"abstract":"<p> We study the operator acting in <span>\\(L_2(\\mathbb{R})\\)</span> by the formula <span>\\(( \\mathcal{A} \\psi)(x)=\\psi(x+\\omega)+\\psi(x-\\omega)+ \\lambda e^{-2\\pi i x} \\psi(x)\\)</span>, where <span>\\(x\\in\\mathbb R\\)</span> is a variable, and <span>\\(\\lambda&gt;0\\)</span> and <span>\\(\\omega\\in(0,1)\\)</span> are parameters. It is related to the simplest quasi-periodic operator introduced by P. Sarnak in 1982. We investigate <span>\\( \\mathcal{A} \\)</span> using the monodromization method, the Buslaev–Fedotov renormalization approach, which arose when trying to extend the Bloch–Floquet theory to difference equations on <span>\\( \\mathbb{R} \\)</span>. Within this approach, the analysis of <span>\\( \\mathcal{A} \\)</span> turns out to be very natural and transparent. We describe the geometry of the spectrum and calculate the Lyapunov exponent. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"30 3","pages":"294 - 309"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monodromization and a \\\\( \\\\mathcal{P} \\\\mathcal{T} \\\\)-Symmetric Nonself-Adjoint Quasi-Periodic Operator\",\"authors\":\"D. I. Borisov,&nbsp;A. A. Fedotov\",\"doi\":\"10.1134/S1061920823030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the operator acting in <span>\\\\(L_2(\\\\mathbb{R})\\\\)</span> by the formula <span>\\\\(( \\\\mathcal{A} \\\\psi)(x)=\\\\psi(x+\\\\omega)+\\\\psi(x-\\\\omega)+ \\\\lambda e^{-2\\\\pi i x} \\\\psi(x)\\\\)</span>, where <span>\\\\(x\\\\in\\\\mathbb R\\\\)</span> is a variable, and <span>\\\\(\\\\lambda&gt;0\\\\)</span> and <span>\\\\(\\\\omega\\\\in(0,1)\\\\)</span> are parameters. It is related to the simplest quasi-periodic operator introduced by P. Sarnak in 1982. We investigate <span>\\\\( \\\\mathcal{A} \\\\)</span> using the monodromization method, the Buslaev–Fedotov renormalization approach, which arose when trying to extend the Bloch–Floquet theory to difference equations on <span>\\\\( \\\\mathbb{R} \\\\)</span>. Within this approach, the analysis of <span>\\\\( \\\\mathcal{A} \\\\)</span> turns out to be very natural and transparent. We describe the geometry of the spectrum and calculate the Lyapunov exponent. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"30 3\",\"pages\":\"294 - 309\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920823030032\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920823030032","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们通过公式\(( \mathcal{A} \psi)(x)=\psi(x+\omega)+\psi(x-\omega)+ \lambda e^{-2\pi i x} \psi(x)\)来研究作用于\(L_2(\mathbb{R})\)中的算子,其中\(x\in\mathbb R\)是变量,\(\lambda>0\)和\(\omega\in(0,1)\)是参数。它与1982年P. Sarnak引入的最简单拟周期算子有关。我们研究\( \mathcal{A} \)使用一元化方法,即Buslaev-Fedotov重整化方法,这是在尝试将Bloch-Floquet理论扩展到\( \mathbb{R} \)上的差分方程时出现的。在这种方法中,对\( \mathcal{A} \)的分析变得非常自然和透明。我们描述了光谱的几何形状,并计算了李雅普诺夫指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monodromization   and a \( \mathcal{P} \mathcal{T} \)-Symmetric Nonself-Adjoint Quasi-Periodic Operator

Monodromization and a \( \mathcal{P} \mathcal{T} \)-Symmetric Nonself-Adjoint Quasi-Periodic Operator

We study the operator acting in \(L_2(\mathbb{R})\) by the formula \(( \mathcal{A} \psi)(x)=\psi(x+\omega)+\psi(x-\omega)+ \lambda e^{-2\pi i x} \psi(x)\), where \(x\in\mathbb R\) is a variable, and \(\lambda>0\) and \(\omega\in(0,1)\) are parameters. It is related to the simplest quasi-periodic operator introduced by P. Sarnak in 1982. We investigate \( \mathcal{A} \) using the monodromization method, the Buslaev–Fedotov renormalization approach, which arose when trying to extend the Bloch–Floquet theory to difference equations on \( \mathbb{R} \). Within this approach, the analysis of \( \mathcal{A} \) turns out to be very natural and transparent. We describe the geometry of the spectrum and calculate the Lyapunov exponent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信