{"title":"圆的分段连续变换组的实现","authors":"Yves Cornulier","doi":"10.3934/jmd.2020003","DOIUrl":null,"url":null,"abstract":"We study the near action of the group \\begin{document}$ \\mathrm{PC} $\\end{document} of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of \\begin{document}$ \\mathrm{PC} $\\end{document} is said to be realizable if it can be lifted to a group of permutations of the circle. We prove that every finitely generated abelian subgroup of \\begin{document}$ \\mathrm{PC} $\\end{document} is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips. The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Realizations of groups of piecewise continuous transformations of the circle\",\"authors\":\"Yves Cornulier\",\"doi\":\"10.3934/jmd.2020003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the near action of the group \\\\begin{document}$ \\\\mathrm{PC} $\\\\end{document} of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of \\\\begin{document}$ \\\\mathrm{PC} $\\\\end{document} is said to be realizable if it can be lifted to a group of permutations of the circle. We prove that every finitely generated abelian subgroup of \\\\begin{document}$ \\\\mathrm{PC} $\\\\end{document} is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips. The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2020003\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2020003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
摘要
We study the near action of the group \begin{document}$ \mathrm{PC} $\end{document} of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of \begin{document}$ \mathrm{PC} $\end{document} is said to be realizable if it can be lifted to a group of permutations of the circle. We prove that every finitely generated abelian subgroup of \begin{document}$ \mathrm{PC} $\end{document} is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips. The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.
Realizations of groups of piecewise continuous transformations of the circle
We study the near action of the group \begin{document}$ \mathrm{PC} $\end{document} of piecewise continuous self-transformations of the circle. Elements of this group are only defined modulo indeterminacy on a finite subset, which raises the question of realizability: a subgroup of \begin{document}$ \mathrm{PC} $\end{document} is said to be realizable if it can be lifted to a group of permutations of the circle. We prove that every finitely generated abelian subgroup of \begin{document}$ \mathrm{PC} $\end{document} is realizable. We show that this is not true for arbitrary subgroups, by exhibiting a non-realizable finitely generated subgroup of the group of interval exchanges with flips. The group of (oriented) interval exchanges is obviously realizable (choosing the unique left-continuous representative). We show that it has only two realizations (up to conjugation by a finitely supported permutation): the left and right-continuous ones.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.