{"title":"从条件分位数回归到边际分位数估计及其在缺失数据和因果推理中的应用","authors":"Huijuan Ma, J. Qin, Yong Zhou","doi":"10.1080/07350015.2022.2140158","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Conditional Quantile Regression to Marginal Quantile Estimation with Applications to Missing Data and Causal Inference\",\"authors\":\"Huijuan Ma, J. Qin, Yong Zhou\",\"doi\":\"10.1080/07350015.2022.2140158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2140158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2140158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
From Conditional Quantile Regression to Marginal Quantile Estimation with Applications to Missing Data and Causal Inference
Abstract It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.