双曲曲面的近最优谱隙

IF 5.7 1区 数学 Q1 MATHEMATICS
Will Hide, Michael Magee
{"title":"双曲曲面的近最优谱隙","authors":"Will Hide, Michael Magee","doi":"10.4007/annals.2023.198.2.6","DOIUrl":null,"url":null,"abstract":"We prove that if $X$ is a finite area non-compact hyperbolic surface, then for any $\\epsilon>0$, with probability tending to one as $n\\to\\infty$, a uniformly random degree $n$ Riemannian cover of $X$ has no eigenvalues of the Laplacian in $[0,\\frac{1}{4}-\\epsilon)$ other than those of $X$, and with the same multiplicities. As a result, using a compactification procedure due to Buser, Burger, and Dodziuk, we settle in the affirmative the question of whether there exist a sequence of closed hyperbolic surfaces with genera tending to infinity and first non-zero eigenvalue of the Laplacian tending to $\\frac{1}{4}$.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Near optimal spectral gaps for hyperbolic surfaces\",\"authors\":\"Will Hide, Michael Magee\",\"doi\":\"10.4007/annals.2023.198.2.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if $X$ is a finite area non-compact hyperbolic surface, then for any $\\\\epsilon>0$, with probability tending to one as $n\\\\to\\\\infty$, a uniformly random degree $n$ Riemannian cover of $X$ has no eigenvalues of the Laplacian in $[0,\\\\frac{1}{4}-\\\\epsilon)$ other than those of $X$, and with the same multiplicities. As a result, using a compactification procedure due to Buser, Burger, and Dodziuk, we settle in the affirmative the question of whether there exist a sequence of closed hyperbolic surfaces with genera tending to infinity and first non-zero eigenvalue of the Laplacian tending to $\\\\frac{1}{4}$.\",\"PeriodicalId\":8134,\"journal\":{\"name\":\"Annals of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4007/annals.2023.198.2.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.2.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

摘要

证明了如果$X$是一个有限面积的非紧双曲曲面,那么对于任意$\epsilon>0$,当概率趋近于1为$n\to\infty$时,$X$的一致随机度$n$黎曼覆盖除了$X$的特征值外,没有$[0,\frac{1}{4}-\epsilon)$的拉普拉斯特征值,并且具有相同的多重性。结果,利用Buser, Burger, and Dodziuk的紧化过程,我们肯定地解决了是否存在一类闭双曲曲面序列的问题,这些曲面的属趋于无穷,且拉普拉斯算子的第一非零特征值趋于$\frac{1}{4}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near optimal spectral gaps for hyperbolic surfaces
We prove that if $X$ is a finite area non-compact hyperbolic surface, then for any $\epsilon>0$, with probability tending to one as $n\to\infty$, a uniformly random degree $n$ Riemannian cover of $X$ has no eigenvalues of the Laplacian in $[0,\frac{1}{4}-\epsilon)$ other than those of $X$, and with the same multiplicities. As a result, using a compactification procedure due to Buser, Burger, and Dodziuk, we settle in the affirmative the question of whether there exist a sequence of closed hyperbolic surfaces with genera tending to infinity and first non-zero eigenvalue of the Laplacian tending to $\frac{1}{4}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信