Shuang Liang, Yushuang Sun, Lu Li, Yao Long, Meng Wang, Houzhi Yang, Chun-Di Li, Yan Wang, Shan-Shan Li, Xu Chen, Xin Jin
{"title":"孕酮通过MicroRNA-29b改变妊娠诱导的心肌细胞Kv2.1通道的适应性","authors":"Shuang Liang, Yushuang Sun, Lu Li, Yao Long, Meng Wang, Houzhi Yang, Chun-Di Li, Yan Wang, Shan-Shan Li, Xu Chen, Xin Jin","doi":"10.1155/2022/7145699","DOIUrl":null,"url":null,"abstract":"The cardiovascular system adaptation occurs during pregnancy to ensure adequate maternal circulation. Progesterone (P4) is widely used in hormone therapy to support pregnancy, but little is known about its effects on maternal cardiac function. In this study, we investigated the cardiac repolarization and ion channel expression in pregnant subjects and mice models and studied the effects of P4 administrations on these pregnancy-mediated adaptations. P4 administrations shortened the prolongation of QTC intervals and action potential duration (APD) that occurred during pregnancy, which was mainly attributable to the reduction in the voltage-gated potassium (Kv) current under basal conditions. In vitro studies indicated that P4 regulated the Kv2.1 channel in a bidirectional manner. At a low dose (1 μM), P4 induced upregulation of Kv2.1 through P4 receptor, while at a higher dose (5 μM), P4 downregulated Kv2.1 by targeting microRNA-29b (miR-29b). Our data showed that P4 modulated maternal cardiac repolarization by regulating Kv2.1 channel activity during pregnancy. Kv2.1, as well as miR-29b, might be used as potential therapeutic targets for adaptations of the maternal cardiovascular system or evaluation of progesterone medication during pregnancy.","PeriodicalId":9582,"journal":{"name":"Cardiovascular Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Progesterone Changes the Pregnancy-Induced Adaptation of Cardiomyocyte Kv2.1 Channels via MicroRNA-29b\",\"authors\":\"Shuang Liang, Yushuang Sun, Lu Li, Yao Long, Meng Wang, Houzhi Yang, Chun-Di Li, Yan Wang, Shan-Shan Li, Xu Chen, Xin Jin\",\"doi\":\"10.1155/2022/7145699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cardiovascular system adaptation occurs during pregnancy to ensure adequate maternal circulation. Progesterone (P4) is widely used in hormone therapy to support pregnancy, but little is known about its effects on maternal cardiac function. In this study, we investigated the cardiac repolarization and ion channel expression in pregnant subjects and mice models and studied the effects of P4 administrations on these pregnancy-mediated adaptations. P4 administrations shortened the prolongation of QTC intervals and action potential duration (APD) that occurred during pregnancy, which was mainly attributable to the reduction in the voltage-gated potassium (Kv) current under basal conditions. In vitro studies indicated that P4 regulated the Kv2.1 channel in a bidirectional manner. At a low dose (1 μM), P4 induced upregulation of Kv2.1 through P4 receptor, while at a higher dose (5 μM), P4 downregulated Kv2.1 by targeting microRNA-29b (miR-29b). Our data showed that P4 modulated maternal cardiac repolarization by regulating Kv2.1 channel activity during pregnancy. Kv2.1, as well as miR-29b, might be used as potential therapeutic targets for adaptations of the maternal cardiovascular system or evaluation of progesterone medication during pregnancy.\",\"PeriodicalId\":9582,\"journal\":{\"name\":\"Cardiovascular Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7145699\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/7145699","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Progesterone Changes the Pregnancy-Induced Adaptation of Cardiomyocyte Kv2.1 Channels via MicroRNA-29b
The cardiovascular system adaptation occurs during pregnancy to ensure adequate maternal circulation. Progesterone (P4) is widely used in hormone therapy to support pregnancy, but little is known about its effects on maternal cardiac function. In this study, we investigated the cardiac repolarization and ion channel expression in pregnant subjects and mice models and studied the effects of P4 administrations on these pregnancy-mediated adaptations. P4 administrations shortened the prolongation of QTC intervals and action potential duration (APD) that occurred during pregnancy, which was mainly attributable to the reduction in the voltage-gated potassium (Kv) current under basal conditions. In vitro studies indicated that P4 regulated the Kv2.1 channel in a bidirectional manner. At a low dose (1 μM), P4 induced upregulation of Kv2.1 through P4 receptor, while at a higher dose (5 μM), P4 downregulated Kv2.1 by targeting microRNA-29b (miR-29b). Our data showed that P4 modulated maternal cardiac repolarization by regulating Kv2.1 channel activity during pregnancy. Kv2.1, as well as miR-29b, might be used as potential therapeutic targets for adaptations of the maternal cardiovascular system or evaluation of progesterone medication during pregnancy.
期刊介绍:
Cardiovascular Therapeutics (formerly Cardiovascular Drug Reviews) is a peer-reviewed, Open Access journal that publishes original research and review articles focusing on cardiovascular and clinical pharmacology, as well as clinical trials of new cardiovascular therapies. Articles on translational research, pharmacogenomics and personalized medicine, device, gene and cell therapies, and pharmacoepidemiology are also encouraged.
Subject areas include (but are by no means limited to):
Acute coronary syndrome
Arrhythmias
Atherosclerosis
Basic cardiac electrophysiology
Cardiac catheterization
Cardiac remodeling
Coagulation and thrombosis
Diabetic cardiovascular disease
Heart failure (systolic HF, HFrEF, diastolic HF, HFpEF)
Hyperlipidemia
Hypertension
Ischemic heart disease
Vascular biology
Ventricular assist devices
Molecular cardio-biology
Myocardial regeneration
Lipoprotein metabolism
Radial artery access
Percutaneous coronary intervention
Transcatheter aortic and mitral valve replacement.