具有乘法随机误差和趋势的测量平差

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yun Shi, Peiliang Xu
{"title":"具有乘法随机误差和趋势的测量平差","authors":"Yun Shi, Peiliang Xu","doi":"10.1109/lgrs.2020.3010827","DOIUrl":null,"url":null,"abstract":"Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"18 1","pages":"1916-1920"},"PeriodicalIF":4.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010827","citationCount":"8","resultStr":"{\"title\":\"Adjustment of Measurements With Multiplicative Random Errors and Trends\",\"authors\":\"Yun Shi, Peiliang Xu\",\"doi\":\"10.1109/lgrs.2020.3010827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"18 1\",\"pages\":\"1916-1920\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/lgrs.2020.3010827\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/lgrs.2020.3010827\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2020.3010827","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

摘要

众所周知,遥感大地测量中的测量具有散斑噪声的性质。虽然工程文献中提出了一些主要基于局部加权统计的去斑算法,但对于处理带有散斑或乘性误差的测量数据的统计平差方法的研究相对较少。针对具有乘性误差和趋势的遥感测量数据,建立了基于最小二乘的平差方法,评估了参数估计的准确性,推导了相应的单位权重方差估计公式。仿真实例说明了所开发的理论和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjustment of Measurements With Multiplicative Random Errors and Trends
Measurements in remote sensing geodesy have been well known to be of speckle noise nature. Although a number of despeckling algorithms have been proposed mainly based on the local weighted statistics in the engineering literature, there are relatively few studies on the statistical adjustment methods for processing the measurements contaminated with the speckle or multiplicative errors. We develop the least squares (LS)-based adjustment methods for the remote sensing measurements with multiplicative errors and trends, evaluate the accuracy of the parameter estimates, and derive the corresponding formulas to estimate the variance of the unit weight. Simulation examples are used to illustrate the developed theory and methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信