Alan Rodrigo Diaz-Rizo, H. Aboushady, H. Stratigopoulos
{"title":"通过硬件木马感染的同步泄漏无线ic","authors":"Alan Rodrigo Diaz-Rizo, H. Aboushady, H. Stratigopoulos","doi":"10.1109/TDSC.2022.3218507","DOIUrl":null,"url":null,"abstract":"We propose a Hardware Trojan (HT) attack in wireless Integrated Circuits (ICs) that aims at leaking sensitive information within a legitimate transmission. The HT is hidden inside the transmitter modulating the sensitive information into the preamble of each transmitted frame which is used for the synchronization of the transmitter with the receiver. The data leakage does not affect synchronization and is imperceptible by the inconspicuous nominal receiver as it does not incur any performance penalty in the communication. A knowledgeable rogue receiver, however, can recover the data using signal processing that is too expensive and impractical to be used during run-time in nominal receivers. The HT mechanism is designed at circuit-level and is embedded entirely into the digital section of the RF transceiver having a tiny footprint. The proposed HT attack is demonstrated with measurements on a hardware platform. We demonstrate the stealthiness of the attack, i.e., its ability to evade defenses based on testing and run-time monitoring, and the robustness of the attack, i.e., the ability of the rogue receiver to recover the leaked information even under unfavorable channel conditions.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"3845-3859"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leaking Wireless ICs via Hardware Trojan-Infected Synchronization\",\"authors\":\"Alan Rodrigo Diaz-Rizo, H. Aboushady, H. Stratigopoulos\",\"doi\":\"10.1109/TDSC.2022.3218507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Hardware Trojan (HT) attack in wireless Integrated Circuits (ICs) that aims at leaking sensitive information within a legitimate transmission. The HT is hidden inside the transmitter modulating the sensitive information into the preamble of each transmitted frame which is used for the synchronization of the transmitter with the receiver. The data leakage does not affect synchronization and is imperceptible by the inconspicuous nominal receiver as it does not incur any performance penalty in the communication. A knowledgeable rogue receiver, however, can recover the data using signal processing that is too expensive and impractical to be used during run-time in nominal receivers. The HT mechanism is designed at circuit-level and is embedded entirely into the digital section of the RF transceiver having a tiny footprint. The proposed HT attack is demonstrated with measurements on a hardware platform. We demonstrate the stealthiness of the attack, i.e., its ability to evade defenses based on testing and run-time monitoring, and the robustness of the attack, i.e., the ability of the rogue receiver to recover the leaked information even under unfavorable channel conditions.\",\"PeriodicalId\":13047,\"journal\":{\"name\":\"IEEE Transactions on Dependable and Secure Computing\",\"volume\":\"20 1\",\"pages\":\"3845-3859\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dependable and Secure Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TDSC.2022.3218507\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3218507","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Leaking Wireless ICs via Hardware Trojan-Infected Synchronization
We propose a Hardware Trojan (HT) attack in wireless Integrated Circuits (ICs) that aims at leaking sensitive information within a legitimate transmission. The HT is hidden inside the transmitter modulating the sensitive information into the preamble of each transmitted frame which is used for the synchronization of the transmitter with the receiver. The data leakage does not affect synchronization and is imperceptible by the inconspicuous nominal receiver as it does not incur any performance penalty in the communication. A knowledgeable rogue receiver, however, can recover the data using signal processing that is too expensive and impractical to be used during run-time in nominal receivers. The HT mechanism is designed at circuit-level and is embedded entirely into the digital section of the RF transceiver having a tiny footprint. The proposed HT attack is demonstrated with measurements on a hardware platform. We demonstrate the stealthiness of the attack, i.e., its ability to evade defenses based on testing and run-time monitoring, and the robustness of the attack, i.e., the ability of the rogue receiver to recover the leaked information even under unfavorable channel conditions.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.