求解时变薛定谔方程的辛伪谱时域格式

IF 0.7 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Shen, W. Sha, Xiaojing Kuang, Jinhua Hu, Zhixiang Huang, Xianliang Wu
{"title":"求解时变薛定谔方程的辛伪谱时域格式","authors":"Jing Shen, W. Sha, Xiaojing Kuang, Jinhua Hu, Zhixiang Huang, Xianliang Wu","doi":"10.2528/PIERM18010808","DOIUrl":null,"url":null,"abstract":"A symplectic pseudospectral time-domain (SPSTD) scheme is developed to solve Schrodinger equation. Instead of spatial finite differences in conventional finite-difference time-domain (FDTD) method, the fast Fourier transform is used to calculate the spatial derivatives. In time domain, the scheme adopts high-order symplectic integrators to simulate time evolution of Schrodinger equation. A detailed numerical study on the eigenvalue problems of 1D quantum well and 3D harmonic oscillator is carried out. The simulation results strongly confirm the advantages of the SPSTD scheme over the traditional PSTD method and FDTD approach. Furthermore, by comparing to the traditional PSTD method and the non-symplectic Runge-Kutta (RK) method, the explicit SPSTD scheme which is an infinite order of accuracy in space domain and energy-conserving in time domain, is well suited for a long-term simulation.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"66 1","pages":"109-118"},"PeriodicalIF":0.7000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERM18010808","citationCount":"0","resultStr":"{\"title\":\"Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation\",\"authors\":\"Jing Shen, W. Sha, Xiaojing Kuang, Jinhua Hu, Zhixiang Huang, Xianliang Wu\",\"doi\":\"10.2528/PIERM18010808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A symplectic pseudospectral time-domain (SPSTD) scheme is developed to solve Schrodinger equation. Instead of spatial finite differences in conventional finite-difference time-domain (FDTD) method, the fast Fourier transform is used to calculate the spatial derivatives. In time domain, the scheme adopts high-order symplectic integrators to simulate time evolution of Schrodinger equation. A detailed numerical study on the eigenvalue problems of 1D quantum well and 3D harmonic oscillator is carried out. The simulation results strongly confirm the advantages of the SPSTD scheme over the traditional PSTD method and FDTD approach. Furthermore, by comparing to the traditional PSTD method and the non-symplectic Runge-Kutta (RK) method, the explicit SPSTD scheme which is an infinite order of accuracy in space domain and energy-conserving in time domain, is well suited for a long-term simulation.\",\"PeriodicalId\":39028,\"journal\":{\"name\":\"Progress in Electromagnetics Research M\",\"volume\":\"66 1\",\"pages\":\"109-118\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2528/PIERM18010808\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research M\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/PIERM18010808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research M","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/PIERM18010808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求解薛定谔方程的辛伪谱时域格式。利用快速傅里叶变换代替传统时域有限差分法中的空间有限差分来计算空间导数。在时域上,采用高阶辛积分器模拟薛定谔方程的时间演化。对一维量子阱和三维谐振子的特征值问题进行了详细的数值研究。仿真结果有力地验证了SPSTD方案相对于传统PSTD方法和FDTD方法的优越性。通过与传统的PSTD方法和RK方法的比较,表明SPSTD格式在空间上具有无限阶精度,在时间上具有节能性,适合于长期仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic Pseudospectral Time-Domain Scheme for Solving Time-Dependent Schrodinger Equation
A symplectic pseudospectral time-domain (SPSTD) scheme is developed to solve Schrodinger equation. Instead of spatial finite differences in conventional finite-difference time-domain (FDTD) method, the fast Fourier transform is used to calculate the spatial derivatives. In time domain, the scheme adopts high-order symplectic integrators to simulate time evolution of Schrodinger equation. A detailed numerical study on the eigenvalue problems of 1D quantum well and 3D harmonic oscillator is carried out. The simulation results strongly confirm the advantages of the SPSTD scheme over the traditional PSTD method and FDTD approach. Furthermore, by comparing to the traditional PSTD method and the non-symplectic Runge-Kutta (RK) method, the explicit SPSTD scheme which is an infinite order of accuracy in space domain and energy-conserving in time domain, is well suited for a long-term simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Electromagnetics Research M
Progress in Electromagnetics Research M Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.50
自引率
10.00%
发文量
114
期刊介绍: Progress In Electromagnetics Research (PIER) M publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. Especially, PIER M publishes papers on method of electromagnetics, and other topics on electromagnetic theory. It is an open access, on-line journal in 2008, and freely accessible to all readers via the Internet. Manuscripts submitted to PIER M must not have been submitted simultaneously to other journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信