{"title":"零维完全交点Tjurina数的一个尖锐下界","authors":"A. G. Aleksandrov","doi":"10.1134/S001626632301001X","DOIUrl":null,"url":null,"abstract":"<p> As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., <span>\\(\\tau \\leqslant \\mu\\)</span>. In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 1","pages":"1 - 17"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Sharp Lower Bound for the Tjurina Number of Zero-Dimensional Complete Intersections\",\"authors\":\"A. G. Aleksandrov\",\"doi\":\"10.1134/S001626632301001X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., <span>\\\\(\\\\tau \\\\leqslant \\\\mu\\\\)</span>. In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 1\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001626632301001X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632301001X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a Sharp Lower Bound for the Tjurina Number of Zero-Dimensional Complete Intersections
As is known, for isolated hypersurface singularities and complete intersections of positive dimension, the Milnor number is the least upper bound for the Tjurina number, i.e., \(\tau \leqslant \mu\). In this paper we show that, for zero-dimensional complete intersections, the reverse inequality holds. The proof is based on properties of faithful modules over an Artinian local ring. We also exploit simple properties of the annihilator and the socle of the modules of Kähler differentials and derivations and the theory of duality in the cotangent complex of zero-dimensional singularities.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.