非参数MCMC Gibbs采样方法及相关统计方法中单倍型频率估计的误分类评估

Q4 Medicine
G. Ken-Dror, Pankaj Sharma
{"title":"非参数MCMC Gibbs采样方法及相关统计方法中单倍型频率估计的误分类评估","authors":"G. Ken-Dror, Pankaj Sharma","doi":"10.18502/jbe.v8i3.12304","DOIUrl":null,"url":null,"abstract":"Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. \nMethods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. \nResults: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. \nConclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Parametric MCMC Gibbs Sampler Approach and Misclassification Assessment of Estimating Haplotype Frequencies among Related Statistical Approaches\",\"authors\":\"G. Ken-Dror, Pankaj Sharma\",\"doi\":\"10.18502/jbe.v8i3.12304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. \\nMethods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. \\nResults: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. \\nConclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.\",\"PeriodicalId\":34310,\"journal\":{\"name\":\"Journal of Biostatistics and Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jbe.v8i3.12304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v8i3.12304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

简介:单倍型分析允许在遗传关联研究中进行更高分辨率的分析,并在全基因组关联研究中用作基因型插补的参考小组。根据不相关个体的基因型估计单倍型,但单倍型重建的错误分类将直接影响结果的准确性。方法:本研究提出了一种新的统计方法Gibbs采样器算法来估计单倍型频率,并量化估计单倍类型的错误分类偏差的影响。假设链接相位未知,在模拟数据集上评估算法的性能。该模拟使用了每个单核苷酸多态性(SNP)的不同次要等位基因频率和SNP之间的不同连锁不平衡。结果:与以前的相关统计方法相比,吉布斯采样器算法在超过7个或更少的SNPs中表现出更高的准确性,并得到了验证,并处理了缺失的基因型。估计单倍型的错误分类导致暴露的非差异性偏差,并影响单倍型分析中的单倍型估计。观察到的比值比低估了单倍型和表型之间的相关性36%至99%。结论:吉布斯采样器算法提供了更高的准确性和稳健的有效性性能,处理了缺失的基因型,并提供了单倍型频率的不确定概率。估计单倍型的错误分类偏差低估了遗传关联40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Parametric MCMC Gibbs Sampler Approach and Misclassification Assessment of Estimating Haplotype Frequencies among Related Statistical Approaches
Introduction: Haplotype analysis allows higher resolution analysis in genetic association studies and is used as a reference panel for genotype imputation in genome-wide association studies. Haplotypes estimates from genotypes among unrelated individuals but misclassification of the haplotype reconstruction will directly affect the accuracy of the results. Methods: This study proposes a novel statistical method Gibbs sampler algorithm to estimate haplotype frequency and quantify the influence of misclassification bias of the estimate haplotype. The performance of the algorithm is evaluated on simulated datasets assuming that linkage phase unknown. The simulation used different minor allele frequencies at each single nucleotide polymorphism (SNP) and different linkagedisequilibrium between the SNPs. Results: The Gibbs sampler algorithm presents higher accuracy among over seven SNPs or less, validated, and deals with missing genotype compared to previous related statistical approaches. Misclassification of estimated haplotypes leads to non-differential bias in exposure and affects haplotype estimates in haplotype analysis. The observed odds ratio underestimates the association between haplotype and phenotype by 36% to 99%. Conclusion: The Gibbs sampler algorithm provides higher accuracy and robust effectiveness performance, handles missing genotypes and provides uncertain probabilities of haplotype frequencies. The misclassification bias of the estimate haplotype underestimates the genetic association by more than forty percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信