采用多种节能措施改造既有住宅的能效评估

Q2 Energy
A. Freewan, Rawan N. T. Kan'an
{"title":"采用多种节能措施改造既有住宅的能效评估","authors":"A. Freewan, Rawan N. T. Kan'an","doi":"10.15866/irecon.v9i4.20276","DOIUrl":null,"url":null,"abstract":"Retrofitting of existing buildings is one of the most effective ways to decrease building energy consumptions and reduce CO2 emissions, making buildings more comfortable and sustainable. This research aims at improving the energy performance of existing buildings through minimizing lighting, cooling, and heating loads. The study has used a real case data and energy efficiency simulation using IES-VE, a software package for building energy analysis and sustainable design. A single existing family building in Jordan has been used as a case study. The paper has studied many energy saving measures based on the economical value, the technological and the architectural features of the building, in order to show how related variables could improve the building’s energy performance. The research has studied variables like roof insulation, shading devices, and double-glazing. A combination of all the strategies has resulted in an efficient retrofit measure that has helped reducing energy consumption by an average of 40% annually, controlling heat loss, and gain. Roof insulation and shading devices have been the most efficient measures for reducing energy consumption in buildings while the PV has been the most efficient as energy saving. The results of this research have approved that studying retrofit scenarios on real case and have helped to provide real measurements and real impact of applying energy measures and how to develop simulation setting. It has helped developing guidelines and references for decision and policy makers, future investments and designer based on the research results. A matrix has been developed to compromise between initial cost, performance, feasibility, payback period of retrofit technologies, and finally installation process.","PeriodicalId":37583,"journal":{"name":"International Journal on Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Energy Efficiency of Retrofitting Existing Residential Buildings Using Multiple Energy-Saving Measures\",\"authors\":\"A. Freewan, Rawan N. T. Kan'an\",\"doi\":\"10.15866/irecon.v9i4.20276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrofitting of existing buildings is one of the most effective ways to decrease building energy consumptions and reduce CO2 emissions, making buildings more comfortable and sustainable. This research aims at improving the energy performance of existing buildings through minimizing lighting, cooling, and heating loads. The study has used a real case data and energy efficiency simulation using IES-VE, a software package for building energy analysis and sustainable design. A single existing family building in Jordan has been used as a case study. The paper has studied many energy saving measures based on the economical value, the technological and the architectural features of the building, in order to show how related variables could improve the building’s energy performance. The research has studied variables like roof insulation, shading devices, and double-glazing. A combination of all the strategies has resulted in an efficient retrofit measure that has helped reducing energy consumption by an average of 40% annually, controlling heat loss, and gain. Roof insulation and shading devices have been the most efficient measures for reducing energy consumption in buildings while the PV has been the most efficient as energy saving. The results of this research have approved that studying retrofit scenarios on real case and have helped to provide real measurements and real impact of applying energy measures and how to develop simulation setting. It has helped developing guidelines and references for decision and policy makers, future investments and designer based on the research results. A matrix has been developed to compromise between initial cost, performance, feasibility, payback period of retrofit technologies, and finally installation process.\",\"PeriodicalId\":37583,\"journal\":{\"name\":\"International Journal on Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15866/irecon.v9i4.20276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15866/irecon.v9i4.20276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

对现有建筑进行改造是降低建筑能耗、减少二氧化碳排放、使建筑更舒适、更可持续的最有效方法之一。这项研究旨在通过最大限度地减少照明、制冷和供暖负荷来提高现有建筑的能源性能。该研究使用了实际案例数据,并使用IES-VE进行了能源效率模拟,IES-VE是一个用于建筑能源分析和可持续设计的软件包。约旦现有的一栋单户建筑已被用作案例研究。本文从建筑的经济价值、技术和建筑特点出发,研究了许多节能措施,以展示相关变量如何提高建筑的能源性能。这项研究研究了屋顶隔热、遮阳装置和双层玻璃等变量。所有策略的结合产生了一种有效的改造措施,有助于每年平均减少40%的能源消耗,控制热量损失和增益。屋顶隔热和遮阳装置是降低建筑能耗的最有效措施,而光伏发电是最有效的节能措施。这项研究的结果证实了在真实情况下研究改造场景,并有助于提供应用能源措施的真实测量和实际影响,以及如何开发模拟设置。它有助于根据研究结果为决策者、未来投资和设计师制定指导方针和参考资料。已经制定了一个矩阵,以在初始成本、性能、可行性、改造技术的回收期以及最终的安装过程之间进行折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Energy Efficiency of Retrofitting Existing Residential Buildings Using Multiple Energy-Saving Measures
Retrofitting of existing buildings is one of the most effective ways to decrease building energy consumptions and reduce CO2 emissions, making buildings more comfortable and sustainable. This research aims at improving the energy performance of existing buildings through minimizing lighting, cooling, and heating loads. The study has used a real case data and energy efficiency simulation using IES-VE, a software package for building energy analysis and sustainable design. A single existing family building in Jordan has been used as a case study. The paper has studied many energy saving measures based on the economical value, the technological and the architectural features of the building, in order to show how related variables could improve the building’s energy performance. The research has studied variables like roof insulation, shading devices, and double-glazing. A combination of all the strategies has resulted in an efficient retrofit measure that has helped reducing energy consumption by an average of 40% annually, controlling heat loss, and gain. Roof insulation and shading devices have been the most efficient measures for reducing energy consumption in buildings while the PV has been the most efficient as energy saving. The results of this research have approved that studying retrofit scenarios on real case and have helped to provide real measurements and real impact of applying energy measures and how to develop simulation setting. It has helped developing guidelines and references for decision and policy makers, future investments and designer based on the research results. A matrix has been developed to compromise between initial cost, performance, feasibility, payback period of retrofit technologies, and finally installation process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal on Energy Conversion
International Journal on Energy Conversion Energy-Nuclear Energy and Engineering
CiteScore
3.30
自引率
0.00%
发文量
8
期刊介绍: The International Journal on Energy Conversion (IRECON) is a peer-reviewed journal that publishes original theoretical and applied papers on all aspects regarding energy conversion. It is intended to be a cross disciplinary and internationally journal aimed at disseminating results of research on energy conversion. The topics to be covered include but are not limited to: generation of electrical energy for general industrial, commercial, public, and domestic consumption and electromechanical energy conversion for the use of electrical energy, renewable energy conversion, thermoelectricity, thermionic, photoelectric, thermal-photovoltaic, magneto-hydrodynamic, chemical, Brayton, Diesel, Rankine and combined cycles, and Stirling engines, hydrogen and other advanced fuel cells, all sources forms and storage and uses and all conversion phenomena of energy, static or dynamic conversion systems and processes and energy storage (for example solar, nuclear, fossil, geothermal, wind, hydro, and biomass, process heat, electrolysis, heating and cooling, electrical, mechanical and thermal storage units), energy efficiency and management, sustainable energy, heat pipes and capillary pumped loops, thermal management of spacecraft, space and terrestrial power systems, hydrogen production and storage, nuclear power, single and combined cycles, miniaturized energy conversion and power systems, fuel cells and advanced batteries, industrial, civil, automotive, airspace and naval applications on energy conversion. The Editorial policy is to maintain a reasonable balance between papers regarding different research areas so that the Journal will be useful to all interested scientific groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信